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Water Internal, Surface Gravity and Bottom Sediment

Waves
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Alexey Alexandrovich Shmelev
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on August 19, 2011, in partial fulfillment of the

requirements for the degree of
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Abstract

This thesis describes the physics of fully three-dimensional low frequency acoustic in-
teraction with internal waves, bottom sediment waves and surface swell waves that are
often observed in shallow waters and on continental slopes. A simple idealized model
of the ocean waveguide is used to analytically study the properties of acoustic normal
modes and their perturbations due to waves of each type. The combined approach
of a semi-quantitative study based on the geometrical acoustics approximation and
on fully three-dimensional coupled mode numerical modeling is used to examine the
azimuthal dependence of sound wave horizontal reflection from, transmission through
and ducting between straight parallel waves of each type. The impact of the natural
crossings of nonlinear internal waves on horizontally ducted sound energy is studied
theoretically and modeled numerically using a three-dimensional parabolic equation
acoustic propagation code. A realistic sea surface elevation is synthesized from the di-
rectional spectrum of long swells and used for three-dimensional numerical modeling
of acoustic propagation. As a result, considerable normal mode amplitude scintilla-
tions were observed and shown to be strongly dependent on horizontal azimuth, range
and mode number. Full field numerical modeling of low frequency sound propaga-
tion through large sand waves located on a sloped bottom was performed using the
high resolution bathymetry of the mouth of San Francisco Bay. Very strong acoustic
ducting is shown to steer acoustic energy beams along the sand wave’s curved crests.

Thesis Supervisor: James F. Lynch
Title: Senior Scientist, Woods Hole Oceanographic Institution
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Chapter 1

Introduction

1.1 Background

Low frequency acoustic propagation in shallow waters has received a lot of attention

in the last several decades. While naval operations and underwater surveillance were

some of the primary motivations of studying this field, a number of scientific and

commercial applications such as studying the dynamics of the ocean, underwater

long range communications or tracking marine mammals showed a growing interest

in shallow water acoustics. Early studies were focused on sound interactions with

the sea bottom whose geological structure, slope and roughness are known to be

important parameters for acoustic energy loss [1]. Along with the seabed, there

are many other oceanographic features that create loss or gain of acoustic energy

and are as important. Propagation of sound waves through meso-scale eddies or a

meandering shelfbreak front can result in a significant variability of acoustic pulse

travel time and the acoustic depth energy distribution. On the ocean fine scale,

nonlinear internal waves [2], that are common for most of the continental shelves

in the summer time or at low latitudes, are known to be very important features

for low frequency acoustic propagation and scattering. In the 1980’s Yellow Sea

experiments, Zhou et al. [3] showed and theoretically explained very strong (up

to 25 dB) resonance-like intensity fluctuations that are both frequency and internal

wave direction dependent. Preisig and Duda [4] studied the impact of individual
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soliton-type internal waves on normal mode coupling physics and clearly showed its

dependence on wave width, amplitude and acoustic frequency. Colosi and Flatte

theoretically showed [5] that acoustic normal mode coupling induced by deep water

internal waves largely contributes to scattering of low frequency signals at long ranges.

In the 1995 Shallow Water Acoustics in a Random Medium experiment (SWARM95)

[6], strong mode coupling was observed and studied statistically [7] for the across

internal wave propagation direction. Also as part of the SWARM95 experiment,

Badiey [8] measured acoustic signals for an along waves path and showed that strong

intensity fluctuations are caused by horizontal ducting of the acoustic signal between

internal waves. This was the first experimental evidence of an out of vertical plane

acoustic interaction with internal waves, which was predicted theoretically in [9] and

numerically in [10, 11]. The Shallow Water 2006 Experiment (SW06) [12, 13] was

the first effort that concentrated on measuring the fully three-dimensional variability

of the water column as well as acoustic signals coming from both the across and

along internal waves directions. For that experiment, both intensity and angle of

arrival fluctuations analyses [14], that are also presented in this thesis, were made

for the along internal wave acoustic track with a fixed source and receiving array.

The first experimental evidence of the horizontal Lloyd’s mirror, an inherently three-

dimensional acoustic effect, was clearly observed in SW06 by Badiey et. al. [15].

Also in SW06, Lynch et. al. [16] presented results on intensity fluctuations and

their azimuthal dependence for a mobile source acoustic signal. As a result of SW06,

studies of three-dimensional low frequency acoustic, including the effects of internal

waves natural curvature [17] and termination [18, 19], were extensively developed.

Most of the theoretical work on three-dimensional acoustic propagation in the

along internal wave direction has been made under the adiabatic approximation, and

mode coupling for these scenarios was not considered important. However, refraction

of internal waves in shallow waters, as well as the existence of strong scatterers such

as bottom canyons, causes internal wave front’s curvature and wave crossings. These

crossings are observed [20] in almost every region of continental shallow waters when

nonlinear internal wave activity exists. Since the angle of crossing varies widely, from
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zero to ninety degrees, acoustic energy ducted in between internal waves from one

train may interact with another train of waves at all possible angles, and the effects

of energy transfer due to normal mode coupling need to be addressed.

Besides internal waves, there are two other types of shallow water inhomogeneities

that we will consider to be important for three-dimensional acoustics: bottom sedi-

ment waves and surface gravity waves. Bottom waves are common in shallow water

and on the shelfbreak in the forms of small (ripples), medium (megaripples) and large

(sand waves) transverse bedforms [21]. Note that in the literature the term ”sand

dunes” can refer to both sand waves and megaripples. Bottom ripples have wave-

lengths of centimeters, whereas the length scales of megaripples and sand waves are

tens and even hundreds of meters. The last two are of more importance for the low

frequency acoustics because of their size. Middleton and Southard [22] summarized

the major distinctions between megaripples and sand waves based on their formation

mechanisms and the seabed type. He concludes that sand waves are more regular

and have longer crest continuity than megaripples. Reeder et al. [23] has recently

observed large sand waves on the continental slope of the Northern South China Sea

that have crest to crest wavelengths exceeding 350 meters and amplitude exceeding

16 meters. He discovered that these waves were generated by strong interaction of

nonlinear internal waves with the continental slope. In similar observations at the

Japan Sea shelf, Serebryany showed very good correlation between the shapes of non-

linear internal waves and sand waves located one above another [24]. In his thesis,

de Koning [25] applied a stochastic approach to describe the sand waves geometrical

distribution in the North Sea and provided its directional spectrum. The literature

and bathymetry data suggest that the existence of megaripples and sand waves of

various amplitudes is common for the majority of continental shelf regions and shelf-

breaks. Although many of the mechanisms of their formation are known and well

understood now, their impact on three-dimensional acoustic propagation has not yet

been studied, and is of great interest to us. For the purposes of this thesis, we will

refer to both types of bedforms above as to bottom sediment waves.

Ocean surface waves with relatively short wavelengths generally act as random
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scatterers for acoustic signals [1]. If wave breaking occurs, they are also known to

be strong generators of ambient noise [26]. When studying low frequency (ten to

a thousand Hz) acoustics, longer wavelength ocean surface waves are of particular

interest. In a developing storm area, longer wavelength, and therefore longer period,

surface waves are generated last. However, once generated, these long waves, also

called swell, travel with faster speed and to longer distances than the shorter (sea)

waves [27]. A striking example of swell that traveled along a great circle from the

Indian ocean to California was digitally recorded and described in detail by Munk [28].

Similar measurements by Goda [29] showed a significant wave height of two meters

for swell that traveled over nine thousand kilometers, and had a narrow directional

spectrum. Similarly to internal waves and bottom waves, long wavelength narrow

directional swells are believed to have a noticeable three-dimensional impact on low

frequency acoustic propagation, which has not been investigated before.

1.2 Overview of the Thesis

This work is dedicated to studying the three-dimensional interaction of low frequency

acoustic signals with ocean internal, surface and bottom waves. As a motivation for

the theoretical study, in Chapter 2 we present our observations of the horizontal angle

of arrival variability noticed in the SW06 data for a fixed acoustic source and receiver

array. In Chapter 3, we will briefly summarize the fundamentals of acoustic normal

mode theory, a primary tool used to approach our problem. Theoretical analysis of

normal mode properties and their perturbation due to the presence of each of the three

types of waves is studied using the example of an idealized, but insightful waveguide

model, and this is presented in Chapter 4. In Chapter 5, a theoretical approach is used

for studying three-dimensional effects of acoustic propagation in presence of straight

and parallel waves of each type. These effects are also illustrated by fully three-

dimensional coupled mode numerical modeling. A natural and important property of

internal waves is to have crossing structures, and this is discussed with applications to

three-dimensional acoustics and also simulated numerically in Chapter 6. In Chapter
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7, we present a computational look into acoustic propagation through real ocean

environments with each type of wave present, as well as discuss our suggestions for

possible future experiments. The summary and conclusions of this work are found in

Chapter 8.
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Chapter 2

Observations from the Shallow

Water 2006 Experiment

2.1 Experiment Overview

The Shallow Water 2006 (SW06) experiment [12, 13] was conducted off the coast of

New Jersey (Fig. 2-1a), in the same area as the previous SWARM95 [6] experiment,

and lasted over two months (mid-July - mid-September). The experiment involved

sixty two environmental and acoustic moorings, seven research vessels, ten ocean

gliders, mobile acoustic sources, airborne and satellite measurements, and the mutual

effort of many institutions and universities. One of the primary goals was the de-

tailed study of the linear and nonlinear internal waves found in that region and their

three-dimensional interaction with low and medium frequency acoustic signals. To

accomplish this goal, environmental moorings were deployed in a T-geometry (Fig.

2-1b) that includes a thirty kilometer path along the shelfbreak at the eighty me-

ter isobath (stem of the T) and a fifty kilometer path across the shelfbreak (top of

the T). Acoustic sources were deployed at the outer ends of the T and an L-shaped

acoustic receiving array was placed at the intersection of the along and across shelf-

break paths (WHOI array in Fig. 2-1b). A number of closely spaced environmental

moorings were concentrated near the acoustic array to measure the three-dimensional

structure of the internal wave fields. This overall setup allowed the measurement of
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Figure 2-1: (a) Location of the SW06 experiment. (b) T-geometry of the environ-
mental and acoustic moorings during the deployment.

acoustic signals traveling along and across shelfbreak, the latter of which also is nearly

perpendicular to mean direction of the prominent nonlinear internal wave crests. The

amplitudes of nonlinear internal waves observed at the moorings along eighty meter

isobath varied from a few to 25 m with mean amplitude of approximately 8 m [30].

Physically the acoustic L-shaped WHOI array consisted of horizontal and verti-

cal line arrays (HLA/VLA) connected by a heavy steel box with electronic hardware.

This box, also called Shark because of its shape, was simultaneously recording the sig-

nals received by the HLA and VLA hydrophones (Fig. 2-2). The HLA had 31 evenly
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Figure 2-2: Configuration of the horizontal and vertical line arrays connected to the
hardware recording box (called Shark because of its shape).

spaces hydrophones and a total aperture of 465 meters. During the deployment, the

HLA was stretched tight between the Shark node at the south end and HLA tail sled

node at the north end. The VLA consisted of 16 hydrophones of total aperture 66

meters and was kept tightened by large flotation sphere at 11 meters depth. A long

baseline acoustic navigation system was also deployed and used both for tracking the

lateral movement of the HLA and the VLA tilt caused by the semiduirnal tides and

internal wave induced currents (see Appendix A for details).

2.2 Observations

Though SW06 was perhaps the third experiment to examine low frequency acoustic

transmission along internal waves (after the Yellow Sea experiment and SWARM95),

it was the first to provide extensive environmental measurements and support along

such paths. Our initial interest here is to look at the signals coming from along the

shelfbreak directions. The Naval Research Lab (NRL) linear frequency modulated

source (denoted as NRL300 in Fig. 2-1b) was deployed at a depth of 72 meters at

the outer end of the along shelf path. The straight line horizontal distance and the

bearing relative to the True North to this source from the Shark were 18 km and 27.2
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Figure 2-3: Position of the Naval Research Lab source, NRL300, relative to the Shark
(WHOI array).
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Figure 2-4: Demodulated replica of the NRL300 LFM signal (black line) and its
envelope (red line).

deg respectively (Fig. 2-3). The source radiated an upsweeping LFM signal (270-330

Hz) with a length of 2.048 seconds. Ten percent of the signal length (0.2048 seconds)

in the beginning and at the end are tapered with a cosine function. Signal was

repeated every 4.096 seconds, i.e. with 2.048 seconds of silence between repeating. A

demodulated replica of the signal (i.e. with central frequency 300 Hz extracted) and

its envelope are shown in Fig. 2-4. Transmissions were scheduled every half hour with

total duration of seven minutes. For the central frequency of 300 Hz, a reference

sound speed 1500 m/s and a horizontal range of 18 km, the first Fresnel zone has a

diameter of 752 m which covers the HLA aperture. This allows us to use plane wave

approximation for the wave front. Figure 2-5 illustrates the example of the received at

the HLA signals cross-correlated with its replica shown in black lines (these outputs

are called compressed pulses). As one can see from the figure, normal mode arrivals
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are not totally time resolvable. The more detailed analysis of signal received at the

VLA showed that the first peak was often a result of the interference between the first

two (and highest amplitude) modes. In order to separate modes one and two from the

other arrivals, the signal was multiplied by a Hann window of 0.2 seconds length and

centered at the first peak of the compressed pulses. The windowed signals are shown

by red lines in Fig. 2-5. Using the shape of the HLA and its hydrophone locations

found in Appendix A, the angle of the signal arrival is then found by plane wave

beamforming [31] of the filtered pulse compressed signals. For our signal processing,

we assumed the waveguide properties along the HLA to be locally range independent

for the time frame of each transmission and used the water column properties for the

VLA location. This is a reasonable assumption for our application since the signal’s

distortion over the length scale of the HLA aperture is considered very small compared

to the total traveled distance of 18 km. However, it is not perfect, especially when

strong acoustic scatterers like a internal solitons or high sea swell are over the array.

We also used the group speed of mode one, that was computed with KRAKEN normal

mode code [32], for beamforming computations. We note that our filtered signal is a

superposition of modes one and two, and there is thus associated uncertainty in angle

of arrival estimation that needs to be addressed. Using the first order assumption of

range independent waveguide and adiabatic propagation of normal modes along the

transmission path, this uncertainty was evaluated numerically to be 1.1 degrees for

the examples we will consider below.

Scheduled transmissions started every half hour, with a duration of 7 minutes and

30 seconds. Figure 2-6 shows the output of beamforming for three selected receptions,

one for the transmission session during 11:30-11:37 UTC and two others for 12:00-

12:07 UTC on August 19, 2006. At this time, internal waves activity with amplitudes

exceeding 18 m was registered at the VLA. One can clearly see from the figure that

over the time window of 37 min (two transmission sessions), the difference in the

maximum of beamforming output (horizontal beam wobble) is approximately four

degrees. The modal interference uncertainty is a part of the beam wobble, but it

constitutes only 25 percent of this phenomenon. This beam wobble was not observed
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Figure 2-5: Signals received along the HLA and cross-correlated with its replica
(compressed pulses) are shown by black lines. Hann windowed outputs are shown by
red lines.

in the quiescent periods of internal wave activity. In an independent analysis, Duda

et. al. showed [14] similar angle of arrival fluctuations using horizontal coherence

analysis along the HLA for the lower frequency (100 Hz) phase-coded signal radiated

by the Miami Sound Machine source that was located not far from the NRL300 (MSM

source in Fig. 2-3). Also, Badiey et. al. [15] performed careful modal and frequency

decomposition of the NRL300 signal on the August 17, during another time of strong

internal wave activity, and registered two distinct arrivals for certain modes, clearly

indicating the out of vertical plane acoustic propagation.

The uncertainty in the directional characteristics of the acoustic signals seen in

our observations and other known directional studies from SW06 clearly indicate the

importance of understanding the three-dimensional acoustic propagation in presence

of fine scale oceanography. In the studies which follow, we use both theoretical and

computational approaches to summarize both the known effects and also to investigate

other possible three-dimensional mechanisms causing out of vertical plane acoustic

38



20 25 30 35 40
Look angle, deg

B
(θ

)

Figure 2-6: Beamforming output for three selected receptions for transmissions during
11:30-11:37 and 12:00-12:07 on August 19, 2006.

propagation through ocean internal waves as well as two other wave types that are

also believed to impact the three-dimensional acoustics.
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Chapter 3

Brief Overview of Normal Mode

Theory

There are three common approaches for describing underwater acoustic propagation:

rays, normal modes and the parabolic equation. Ray-based theory is constrained by

the high frequency approximation, and is most suitable at short distances from the

source, where the field is composed of a direct path and a few reflected waves. In

shallow water, the wavelength of low frequency signals is often comparable to the wa-

ter column depth. Also, we are interested in horizontal distances of several to tens of

kilometers over which multiple acoustic interactions with both the ocean surface and

seabed occur. This makes the normal mode and parabolic equation approaches more

suitable for our applications. Parabolic equation algorithms are very efficient meth-

ods of computing the acoustic field. However, they don’t provide us with the physics

insight of the normal mode technique, such as coupling in range dependent environ-

ments. In this chapter, we will review the fundamentals of normal mode theory and

its applications to shallow water waveguides. To start, we will derive the depth sepa-

rated normal mode equation for the case of a range independent environment (Section

3.1). For understanding the fundamental features of acoustic propagation in shallow

water, we will discuss normal mode solutions for two canonical waveguides: a hard

bottom ideal waveguide (Section 3.2), and the Pekeris waveguide, a more complex

problem that involves a penetrable acoustic half-space bottom (Section 3.3). In Sec-
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tion 3.4, coupled mode equations will be derived for the waveguides with properties

varying in three dimensions.

3.1 A Point Source in a Range IndependentWaveg-

uide

We begin with the formal three-dimensional Helmholtz equation that governs the

sound pressure field excited by a point source at coordinates (xs, ys, zs):

ρ∇
(

1

ρ
∇p

)

+
ω2

c2
p = −δ(x− xs)δ(y − ys)δ(z − zs), (3.1)

where p(x, y, z) is the acoustic pressure, ρ(x, y, z) is the medium density, c(x, y, z)

is the medium sound speed, ω = 2πf is the acoustic angular frequency, and δ(x) is

the Dirac delta function. In this section, we consider constant water depth, and a

horizontally stratified medium with sound speed c(z) and density ρ(z). We seek a

solution of the homogeneous part of Eq. (3.1) in terms of depth and radial functions

Ψ(z) and Φ(x, y):

p(x, y, z) = Φ(x, y)Ψ(z). (3.2)

By substituting acoustic pressure of the form of Eq. (3.2) into the homogeneous part

of Eq. (3.1) and dividing it by Φ (x, y)Ψ (z), we obtain

1

Ψ

[

ρ
∂

∂z

(

1

ρ

∂Ψ

∂z

)

+
ω2

c2
Ψ

]

+
1

Φ

[

∂2Φ

∂x2
+

∂2Φ

∂y2

]

= 0. (3.3)

The left hand term in the above equation is a function of z and the right hand term

is a function of x and y. Therefore, Eq. (3.3) is satisfied if each of the terms is equal

to a constant. Denotong this constant by k2
rm, we obtain vertical equation

ρ(z)
d

dz

(

1

ρ(z)

d

dz
Ψm(z)

)

+
(

k2 (z)− k2
rm

)

Ψm(z) = 0, (3.4)
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where

k (z) ≡
√

√

√

√

ω2

c2(z)
(3.5)

is the medium wavenumber. Equation (3.4), when used with appropriate boundary

conditions on the finite depth interval 0 ≤ z ≤ zmax, is a proper Sturm-Liouville

problem with a weighting function
1

ρ(z)
. The solutions to a proper Sturm-Liouville

problem are the eigenvalues krm and associated eigenfunctions Ψm that constitute a

complete set. The eigenfunctions are orthonormal in the sense that

∫ Ψn(z)Ψ
∗
m(z)

ρ(z)
dz = δmn =











1 , m = n,

0 , m 6= n,
(3.6)

where δmn is called Kronecker delta and the star denotes Hermitian conjugate. The

eigenfunctions Ψm are called the normal modes, and the eigenvalues krm are called

the horizontal modal wavenumbers. We also define the vertical modal wavenumber

to be

kzm (z) =
√

k2(z)− k2
rm. (3.7)

Vertical equation (Eq. (3.4)) is often called the modal equation. Normal modes Ψm

form a complete set, i.e. any function can be written as a weighted sum of normal

modes. Therefore, we write acoustic pressure as

p(x, y, z) =
∑

m

Φm(x, y)Ψm(z). (3.8)

Substituting Eq. (3.8) into Eq. (3.1) yields

∞
∑

m=1

{[

∂2Φm

∂x2
+

∂2Φm

∂y2

]

Ψm + k2
rmΦmΨm

}

= −δ (x− xs) δ (y − ys) δ (z − zs) . (3.9)
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Applying the operator

∫

(·) Ψn (z)

ρ (z)
dz (3.10)

to both sides of Eq. (3.9), we obtain the separated horizontal equation

(

∂2

∂x2
+

∂2

∂y2

)

Φn + k2
rnΦn =

Ψn(zs)

ρ(zs)
δ(x− xs)δ(y − ys), (3.11)

which is a Bessel’s equation of the zeroth order and has solutions

Φn(r) =
iH

(1)
0 (krnr)Ψ

∗
n(zs)

4ρ(zs)
, (3.12)

where H
(1)
0 (krnr) is the zeroth order Hankel function of the first kind, and

r =
√

(x− xs)
2 + (y − ys)

2. (3.13)

Equations (3.8) and (3.12) give the following expression for acoustic pressure:

p(r, z) =
i

4ρ(zs)

∞
∑

m=1

Ψ∗
m(zs)Ψm(z)H

(1)
0 (krmr) . (3.14)

Using the asymptotic form of the Hankel function for krmr >> 1, Eq. (3.14) becomes

p(x, y, z) ≈ eiπ/4√
8πrρ(zs)

∞
∑

m=1

Ψm(zs)Ψm(z)
eikrmr

√
krm

. (3.15)

3.2 Normal Modes for an Ideal Waveguide

Let us consider an example of the simplest shallow water profile, an ideal waveguide

with pressure release surface, hard bottom, depth Hbot, constant sound speed c0 and

density ρ0 (Fig. 3-1). It can be shown [33] that corresponding normal modes are

Ψm(z) =

√

2ρ0
Hbot

sin kzmz, (3.16)
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Figure 3-1: A homogeneous fluid layer with pressure release surface and hard bottom
(Ideal waveguide).

where the vertical modal wavenumbers are

kzm =
(

n− 1

2

)

π

H
. (3.17)

The horizontal wavenumbers are therefore

kzm =

√

(

ω

c

)2

−
[(

m− 1

2

)

π

Hbot

]2

. (3.18)

Using Eq. (3.15), the acoustic pressure at a large distance from the source becomes

p(r, z) ≈ eiπ/4

Hbot

√
2πr

∞
∑

m=1

sin (kzmzs) sin (kzmz)
eikrmr

√
krm

=
e−iπ/4

Hbot

√
2πr

∞
∑

m=1

sin (kzmzs)√
krm

[

ei(kzmz+krmr) − e−i(kzmz−krmr)
]

.

(3.19)

The two terms in the square brackets of Eq. (3.19) represent down- and upgoing plane

waves with vertical grazing angles θm defined by the angle between the wavevector

and the horizontal plane (Fig. 3-1), such that

krm = k cos θm, kzm = k sin θm. (3.20)

With increasing mode number, the grazing angle increases, and therefore over a fixed

distance in range, higher order modes experience more bottom and surface interac-

tions.

Although there is an infinite number of normal modes for this waveguide, only a
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Figure 3-2: Homogeneous fluid layer with a pressure release surface and a homoge-
neous, higher sound speed, bottom half space (Pekeris waveguide); vertical grazing
angle regions are for the discrete and continous modal spectrum.

finite number of them have a real horizontal wavenumber. These modes are called

propagating modes. According to Eq. (3.18), for

m > M =
wHbot

c0π
+

1

2
, (3.21)

the horizontal wavenumber becomes imaginary, and the modal amplitude decays ex-

ponentially with range. The corresponding modes are called evanescent modes. Thus,

for large distances from the source, one can limit the sum in Eqs. (3.19) and (3.15)

by M .

3.3 Normal Modes for Pekeris Waveguide

When deriving Eq. (3.14), we made an assumption of a non-singular Sturm-Liouville

problem that has a complete set of normal modes. Many ocean-acoustic problems,

however, have a mixed wavenumber spectrum composed of a discrete finite set of

normal modes that are associated with a properly-posed Sturm-Liouville problem,

and continuous part associated with an improperly-posed Sturm-Liouville problem.

One of the canonical shallow water waveguide examples that has a mixed spectrum

is the Pekeris waveguide. In this waveguide model, a homogeneous fluid layer with

depth Hbot, sound speed c0, density ρ0, and a pressure release surface overlies a

homogeneous bottom fluid half space with higher velocity cbot and density ρbot (Fig.
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3-2). The Pekeris waveguide is one of the fundamental problems in ocean acoustics,

because it describes a large number of the acoustic propagation properties in shallow

water.

We define the angle between the plane wave wavevector and the horizontal plane

as a vertical grazing angle (Fig. 3-2), similar to Eq. (3.20). Unlike the previous ideal

waveguide, acoustic reflection from the bottom interface is not always total, and the

reflection coefficient Rbot depends on the vertical grazing angle:

Rbot (θ) =
ρbotcbot/ sin θbot − ρ0c0/ sin θ

ρbotcbot/ sin θbot + ρ0c0/ sin θ
, (3.22)

where θbot is the vertical grazing angle of the plane wave transmitted into the bottom

half space. It is related to the water layer grazing angle through Snell’s law:

cbot cos θ = c0 cos θbot. (3.23)

There are two distinct vertical grazing angle regions that determine behavior of Rbot.

These are

|Rbot| < 1, θ > θcrit

|Rbot| = 1, θ ≤ θcrit,
(3.24)

where

θcrit = cos−1
(

c0
cbot

)

(3.25)

is the critical grazing angle.

For θ < θcrit, total internal reflection occurs and therefore, Eq. (3.4), together

with the free surface condition and the Neumann boundary condition at the bottom

interface, is associated with a proper Sturm-Liouville problem that has a finite discrete

set of perfectly trapped modes. At steeper grazing angles, θ > θcrit, the acoustic

energy is no longer perfectly reflected, and leakage into the bottom half space occurs.

The Sturm-Liouville problem becomes improperly posed, and this corresponds to a
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modal continuum (See [34] for details). Acoustic pressure is formally expressed as

the sum of a trapped modes contribution (discrete part) and a contribution from the

modal continuum (continuous part):

p(r, z) = pd(r, z) + pc(r, z). (3.26)

The modal continuum is associated with energy loss and thus its contribution to the

acoustic pressure decays with distance from the source. Therefore, at sufficiently large

distances from the source in a range independent environment or in an environment

with slowly varying parameters (see next section), its contribution is negligible, and we

can approximate an acoustic field by including only the first term in Eq. (3.26). The

continuous part of the pressure spectrum becomes important when either the distance

from the source or the distance at which significant changes to the environmental

parameters occur, are less than several wavelengths.

The normal modes for the Pekeris waveguide are [34]

Ψm(z) =











Am sin (kzmz), 0 ≤ z ≤ Hbot,

Am sin (kzmHbot)e
ikzm,bot(z−Hbot), z ≥ Hbot,

(3.27)

where the vertical modal wavenumbers in the layer, kzm, and in the bottom half space,

kzm,bot, are related to the horizontal modal wavenumber by

kzm =

√

(

ω

c0

)2

− k2
rm, (3.28)

kzm,bot =

√

(

ω

cbot

)2

− k2
rm, (3.29)

and are found from

tan(kzmHbot) = − ρbotkzm
ρ0kzm,bot

. (3.30)

Equation (3.30) is a transcendental equation for the eigenvalues krm(ω). Using the
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orthonormality of the modes defined by Eq. (3.6), it is found that

Am =
√
2

[

1

ρ0

(

Hbot −
sin (2kzmHbot)

2kzm

)

− 1

ρbot

sin2 (kzmHbot)

ikzm,bot

]

. (3.31)

With Eq. (3.15), we can approximate the acoustic pressure field at large distances

from the acoustic source as

p(r, z) ≈























eiπ/4√
8πrρ0

M
∑

m=1

A2
m sin (kzmzs) sin (kzmz)

eikrmr

√
krm

, 0 ≤ z ≤ Hbot,

eiπ/4√
8πrρ0

M
∑

m=1

A2
m sin (kzmzs) sin (kzmHbot)e

ikzm,bot(z−Hbot)
eikrmr

√
krm

, z ≥ Hbot,

(3.32)

where M denotes the number of trapped modes.

3.4 Normal Modes for Range Dependent Environ-

ments

Let us return to the Helmholtz equation (Eq. (3.1)) and rewrite it in its Cartesian

components,

ρ ∂
∂x

[

1
ρ
∂p
∂x

]

+ ρ ∂
∂y

[

1
ρ
∂p
∂y

]

+ ρ ∂
∂z

[

1
ρ
∂p
∂z

]

+ ω2

c2
p = −δ (x− xs) δ (y − ys) δ (z − zs) . (3.33)

Using the completeness of the normal mode set, we seek a solution of Eq. (3.33) as

a sum of local modes,

p(x, y, z) =
∑

m

Φm(x, y)Ψm(x, y, z), (3.34)

where Φm(x, y) are the complex modal amplitudes and Ψm(x, y, z) are the local normal

modes defined by

ρ (x, y, z) ∂
∂z

[

1
ρ(x,y,z)

∂Ψm(x,y,z)
∂z

]

+
[

ω2

c2(x,y,z)
− k2

rm (x, y)
]

Ψm (x, y, z) = 0. (3.35)

49



and appropriate boundary conditions at the sea surface and bottom. The local normal

mode set is therefore found at each point (x, y) in the horizontal. Substituting Eq.

(3.35) into Eq. (3.33), applying the operator

∫

(·) Ψn (x, y, z)

ρ (x, y, z)
dz, (3.36)

and using the orthonormality of the modes (Eq. (3.6)), we get the following equation

for modal amplitudes

∂2Φn

∂x2
+

∂2Φn

∂y2
+ k2

rn (x, y) Φn +
∑

m

AmnΦm+

∑

m

Bmn
∂Φm

∂x
+
∑

m

Cmn
∂Φm

∂y
= −δ (x− xs) δ (y − ys)

Ψn (x, y, zs)

ρ (x, y, zs)
,
(3.37)

where the coupling coefficients Amn, Bmn, Cmn are defined by

Amn =
∫

(

ρ
∂

∂x

[

1

ρ

]

∂Ψm

∂x
+ ρ

∂

∂y

[

1

ρ

]

∂Ψm

∂y

)

Ψn

ρ
dz, (3.38)

Bmn =
∫

(

2
∂Ψm

∂x
+ ρ

∂

∂x

[

1

ρ

]

Ψm

)

Ψn

ρ
dz, (3.39)

and

Cmn =
∫

(

2
∂Ψm

∂y
+ ρ

∂

∂y

[

1

ρ

]

Ψm

)

Ψn

ρ
dz. (3.40)

For environments whose parameters change in the horizontal slowly compared to

the acoustic wavelength scale, the coupling coefficients are negligible, and the equation

for the modal amplitude becomes

∂2Φm

∂x2
+

∂2Φm

∂y2
+ k2

rm (x, y) Φm = −δ (x− xs) δ (y − ys)
Ψm (x, y, zs)

ρ (x, y, zs)
, (3.41)

often called the horizontal refraction equation [33]. This approximation, also called

the adiabatic approximation was originally introduced for cylindrically symmetric
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range dependent waveguides by Pierce [35], and more formal derivations were ob-

tained in [36]. Using Eq. (3.41), our initial three-dimensional problem of Eq. (3.33)

reduces to finding the local normal mode set for each point in the horizontal fol-

lowed by solving several two-dimensional problems of Eq. (3.41), one for each normal

mode. This approximation is a very powerful tool as it allows us to solve a num-

ber of three-dimensional acoustic problems analytically and considerably reduces the

computational time of numerical modeling.

Coastal waters are often associated with considerable changes of waveguide prop-

erties over short distances, and generally speaking, mode coupling techniques need

to be employed. However, as we will see in Chapter 5, even with presence of strong

nonlinear internal waves or bottom waves of large amplitude, the adiabatic approx-

imation is sufficient for acoustic propagation within the narrow directional ranges

centered in the direction of the ocean wave crests.
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Chapter 4

Acoustic Normal Mode

Perturbations due to Ocean

Internal Waves, Bottom Sediment

Waves and Surface Waves.

To understand the physics of three-dimensional shallow water acoustic propagation

in the presence of internal waves, bottom sediment waves, or ocean surface waves, it

is important to know the impact of each of these effects on normal mode properties.

In this chapter, we will investigate the perturbation of the normal mode horizontal

wavenumbers and their corresponding mode functions due to the presence of waves

of three types. In order to do this, we will introduce a simple idealized model of

a background shallow water column and then derive the governing equation for the

modal wavenumbers (Section 4.1). Each of the three types of waves will be treated

as a corresponding modification of the model that allows us to find the perturbation

to the modal wavenumbers analytically (Sections 4.2 - 4.4).
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Figure 4-1: Background water column model: two homogeneous fluid layers (upper
layer having slightly higher sound speed) bounded by a free surface and a homoge-
neous half space bottom of higher sound speed.

4.1 Waveguide Model

Let us consider an idealized waveguide with two horizontal fluid layers bounded by

a vacuum half space on top and by a fluid half space below (Fig. 4-1). The lower

acoustic layer is characterized by a constant reference sound speed and density in the

water c0, and ρ0 respectively. The upper layer, that is often called the mixed layer,

has the same density, but slightly higher than reference sound speed cml = c0 + ∆c.

The bottom half space has a constant density and sound speed equal to the seabed

reference values cbot and ρbot. The depth of the interface between layers is D and

the a bottom depth is Hbot. Although this model does not exactly describe the

realistic vertical variation of sound speed, it is fairly simple, and at the same time

approximates a wide range of shallow water columns, especially in the summer time

or in low latitudes, when a higher sound speed surface mixed layer exists.

We assume our waveguide model to be range independent, and derive the ex-

pressions for the normal modes, together with a transcendental equation, similar to

derivations for the Pekeris waveguide [34]. The general solution of Eq. (3.4) within
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the two layers and the bottom half space is

Ψm(z) =



























Cm sin (kzm,mlz), 0 ≤ z ≤ D

Ame
ikzmz + Bme

−ikzmz, D ≤ z ≤ Hbot

Dme
ikzm,botz, z ≥ Hbot,

(4.1)

where we have applied the free surface boundary condition for the upper layer and

the Sommerfeld radiation condition for the bottom half space. Am, Bm, Cm, and

Dm are the constants that satisfy continuity of pressure and particle velocity at the

interface between layers,

Ψm(D
+) = Ψm(D

−), (4.2)

∂Ψm(D
+)

∂z
=

∂Ψm(D
−)

∂z
, (4.3)

and between the lower layer and bottom half space,

Ψm(H
+
bot) = Ψm(H

−
bot), (4.4)

1

ρbot

∂Ψm(H
+
bot)

∂z
=

1

ρ0

∂Ψm(H
−
bot)

∂z
. (4.5)

Vertical modal wavenumbers in the lower layer, kzm, and bottom half space, kzm,bot,

are defined in the same manner as for the Pekeris waveguide by Eqs. (3.28)-(3.29)

and

kzm,ml =

√

√

√

√

ω2

c2ml

− k2
rm (4.6)

is the vertical modal wavenumber in the mixed layer. The boundary conditions (4.2)
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- (4.5) can be rewritten as

Cm sin (kzm,mlD) = Ame
ikzmD + Bme

−ikzmD (4.7)

Cm cos (kzm,mlD) =
ikzm
kzm,ml

(

Ame
ikzmD − Bme

−ikzmD
)

(4.8)

Dme
ikzm,botHbot = Ame

ikzmHbot +Bme
−ikzmHbot (4.9)

1

ρbot
Dme

ikzm,botHbot =
kzm

ρ0kzm,bot

(

Ame
ikzmHbot −Bme

−ikzmHbot

)

. (4.10)

From Eqs. (4.7) and (4.8), it follows that

Bm = Ame
2ikzmDαm, (4.11)

where αm is

αm =
i tan (kzm,mlD) kzm − kzm,ml

i tan (kzm,mlD) kzm + kzm,ml

. (4.12)

From Eqs. (4.7) and (4.8) we get

tan kzmHbot = i
(ρbotkzm − ρ0kzm,bot)Am − (ρbotkzm + ρ0kzm,bot)Bm

(ρbotkzm − ρ0kzm,bot)Am + (ρbotkzm + ρ0kzm,bot)Bm

. (4.13)

Substituting Eq. (4.11) into Eq. (4.13) gives us

tan (kzmHbot) =

i
(ρbotkzm−ρ0kzm,bot)(i tan (kzm,mlD)kzm+kzm,ml)−(ρbotkzm+ρ0kzm,bot)e2ikzmD(i tan (kzm,mlD)kzm−kzm,ml)
(ρbotkzm−ρ0kzm,bot)(i tan (kzm,mlD)kzm+kzm,ml)+(ρbotkzm+ρ0kzm,bot)e2ikzmD(i tan (kzm,mlD)kzm−kzm,ml)

(4.14)

Equation (4.14) is a transcendental equation for our model. Note that it reduces

to the standard transcendental equation for the Pekeris waveguide (Eq. (3.30)) by

setting the depth of the upper acoustic layer to zero, i.e. D = 0, or by making the

vertical modal wavenumbers in the layers equal, i.e. kzm,ml = kzm. Normal modes
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Figure 4-2: Vertical modal wavenumber for the lower layer (left), and horizontal
modal wavenumber (right) computed with the KRAKEN normal mode code for the
waveguide model having sound speed in upper and lower layers cml = 1530 m/s
and c0 = 1500 m/s respectively, density ρ0 = 1000 kg/m3, depth of the interface
between water layers D = 15 m, and bottom of depth Hbot = 80 m with sound speed
cbot = 1800 m/s and density ρbot = 2000 kg/m3.

can be expressed through constants Am as

Ψm(z) =































Ame
ikzmz

(

1 + αme
2ikzm(D−z)

)

, 0 ≤ z ≤ D,
Am

sin (kzm,mlD)
eikzmD(1 + αm) sin (kzm,mlz) , D ≤ z ≤ Hbot,

Ame
−ikzmHbot

(

e2ikzmHbot + αme
2ikzmD

)

e2ikzm,bot(z−H), z ≥ Hbot.

(4.15)

Finally, by applying normal mode normalization defined by Eq. (3.6), the constants

Am are found to be

Am =

[D|1 + αm|2
(

1− sin(2kzm,mlD)
2kzm,mlD

)

2ρ0 sin
2 (kzm,mlD)

+

2(Hbot −D)−Re

{

αme
2ikzm(D−Hbot)

ikzm

}

ρ0
+

i
∣

∣

∣e2ikzmHbot + αme
2ikzmD

∣

∣

∣

2

2ρbotkzm,bot

]−1/2

.

(4.16)

As an example, we will consider the background waveguide model with bottom depth

Hbot = 80 m, lower water layer sound speed c0 = 1500 m/s, water density ρ0 = 1000

kg/m3, the bottom with sound speed cbot = 1800 m/s and density ρbot = 2000 kg/m3,

and the mixed layer with depth D = 15 m and sound speed cml = 1530 m/s. This set

of parameters roughly represents the mean water column properties for the along shelf

acoustic path in the SW06 experiment. Figure 4-2 shows the horizontal wavenum-
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Figure 4-3: First four normal modes for the background water column at 100 Hz
(left), 200 Hz (middle), and 400 Hz (right).
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Figure 4-4: Modal normalization constant Am for the background waveguide at fre-
quencies 100 Hz, 200 Hz and 400 Hz.

58



z=0

z=Hbot

z

r

Ocean

Surface

ρ0, c0

ρbot, cbot> c0 Ocean

Bottom

p=0

z=D

ρ0, cml>c0Internal Waves

z=H
iw

ΔH
iw

Figure 4-5: Depression internal waves represented by lowering the interface between
water layers.

bers krm for this environment model calculated with acoustic normal mode program

KRAKEN [32], for frequencies 100 Hz, 200 Hz and 400 Hz. Similarly to the ideal

waveguide, the vertical wavenumber shows almost an linearly increasing dependence

on mode number, whereas horizontal wavenumber monotonically decreases with mode

number. Once the eigenvalues krm are found, the corresponding normal mode func-

tions Ψm(z) are constructed using Eqs. (4.15-4.16). The first four modes for the

waveguide given the above parameters are plotted in Fig. 4-3.

It is seen numerically that for the mixed layer depth small compared to the water

column depth and in the frequency range 0-500 Hz, the values of Am don’t vary sig-

nificantly across mode number and are approximately equal to [2 (Hbot −D) /ρ0]
−1/2.

As an example, Fig. 4-4 illustrates the values for the frequencies of 100 Hz, 200 Hz

and 400 Hz.

4.2 Internal Waves

The ocean surface mixed layer, which often has a slightly higher temperature and

associated sound speed due to solar heat absorption, is an inherent feature of the

continental shelf water column in summer time and in low latitudes. Internal waves,

commonly observed on large parts of the continental shelf, displace the thermocline,

resulting in a change of the effective depth of the mixed layer. As an approximation

to the vertical thermocline displacement, we use the idealized waveguide described
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in the previous section and model the internal waves as a depression of the interface

between layers with an amplitude of ∆Hiw (Fig. 4-5). In this section, we will evaluate

the amplitude of the modal horizontal wavenumber perturbation due to the presence

of these waves. We will employ standard normal mode perturbation theory for the

water column fluctuations [37].

Let us define the horizontal modal wavenumber at the wave crest as

k1
rm = krm +∆krm, (4.17)

where krm is the wavenumber for the unperturbed environment. The corresponding

vertical modal wavenumbers for the mixed layer, lower layer, and bottom half space

are therefore

k1
zm,ml =

√

(

ω

cml

)2

− k1
rm

2, (4.18)

k1
zm =

√

(

ω

c0

)2

− k1
rm

2, (4.19)

k1
zm,bot =

√

(

ω

cbot

)2

− k1
rm

2 (4.20)

respectively. Assuming small changes in water column sound speed, the wavenumber

correction ∆krm can be expressed in terms of its background values and background

normal modes as

∆krm =
1

2krm

∫ ∞

0

∆q (z) |Ψm(z)|2dz
ρ(z)

. (4.21)

The new set of normal modes is

Ψ1
m = Ψm +

∑

m

amnΨm, (4.22)

where the coefficients amn are

amn =
1

(k2
rm − k2

rn)

∞
∫

0

∆q (z)Ψm (z)Ψn (z) dz

ρ(z)
, (4.23)
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and

q (z) =
ω2

c2 (z)
. (4.24)

In our model, we are considering a displacement of the interface between layers from

depth z = D to z = Hiw. Therefore,

∆q(z) =















ω2

c2ml

− ω2

c20
, 0 ≤ z ≤ Hiw

0 , otherwise

(4.25)

For a small sound speed difference between upper and lower layers, ∆c, we will use

its linearized form,

∆q(z) ≈















−2ω2

c30
∆c , 0 ≤ z ≤ Hiw

0 , otherwise.

(4.26)

where we have defined

∆c = cml − c0. (4.27)

Equation (4.21) now becomes

∆krm ≈ − ω2∆c

krmc30ρ0

Hiw
∫

D

|Ψm(z)|2dz. (4.28)

The above integral is easily solved analytically using the normal mode functions

defined by Eq. (4.15). The resultant first order contribution to the horizontal modal

wavenumber is

∆krm ≈ −2 |Am|2ω2∆c
krmc3

0
ρ0



∆Hiw +
sin (kzm∆Hiw) cos

(

2 tan−1

[

kzm,ml

kzm tan kzm,mlD

]

+kzm∆Hiw

)

kzm



 (4.29)

with normalization constants Am determined by Eqs. (4.16) and (4.12). As we have

discussed in the previous section, these constants don’t vary significantly across mode
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number. Higher order modes, having steeper vertical grazing angles, are characterized

by smaller horizontal wavenumber (see Fig. 4-2). This makes the factor in the

left part of the square brackets in Eq. (4.29) slightly increase with mode number.

Inside the brackets, the left term is a constant, whereas the right term has oscillatory

behavior. The amplitude of its oscillations is inversely proportional to the vertical

modal wavenumber kzm. We noticed in the previous section that kzm is small for low

mode numbers. Therefore, the contribution of the right oscillating term to the total

wavenumber correction for these modes is significant. One can note that in the limit

kzm → 0, the right and left terms exactly cancel each other, resulting in the first

mode having the smallest perturbation of the horizontal wavenumber. With mode

number increasing, kzm becomes greater, and the amplitude of oscillations of the right

term becomes smaller. This suggests convergence at high mode numbers of the total

wavenumber correction to

∆krm ≈ −2
|Am|2ω2∆c

krmc30ρ0

∣

∣

∣

∣

∣

m=M

∆Hiw, (4.30)

where M is the maximum number of propagating modes as before.

As an example, we consider our waveguide model and set the maximum depth of

the perturbed interface between layers to thirty meters (Hiw = 30 m). This makes

an internal wave of amplitude fifteen meters (∆Hiw = 15 m), which is a typical value

observed at a number of continental shelf regions, including the Shallow Water 2006

Experiment site. Figure 4-6 illustrates the change in the horizontal wavenumber for

a frequency 200 Hz caused by this wave, computed with Eq. (4.29) (dashed line),

compared with the numerical solution using the KRAKEN normal mode code (solid

line). Our approximate solution shows very reasonable agreement with the numer-

ically computed wavenumber correction values. Both curves show oscillations with

decreasing amplitude as the mode number increases. As mentioned, the wavenumber

correction for the high mode numbers converges to -3 m-1, as predicted by Eq. (4.30).

Although predicted and numerically computed wavenumber corrections have sim-

ilar behavior, there is an offset between them which is most noticeable for modes 1
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Figure 4-6: Correction to the background horizontal modal wavenumber for frequency
200 Hz due to the internal wave of fifteen meter amplitude, computed numerically
(solid line), using perturbation method (dashed), and using a three step iterative
perturbation method (dot-dashed).
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Figure 4-7: Normal modes 3–5 for background waveguide model (left) and inside a
wave of fifteen meter amplitude (right). Dashed line represents the water-bottom
interface; the interface between water layers (thermocline) is shown as a dotted line
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Figure 4-8: Two methods of the background water column multi-step perturbation
due to internal waves: stepwise displacement of the thermocline (left); stepwise in-
crease of sound speed (right).

– 4. This tells us that the wave amplitude of fifteen meters is too big for a single

step perturbation. To account for this, multi-step perturbations can be applied by

either dividing the thermocline displacement into several steps or by a stepwise in-

crease of the sound speed from c0 to cml = c0 + ∆c (Fig. 4-8). The latter method

involves computation of normal mode perturbations defined by Eq. (4.22) and in

general requires less steps in order to converge to a numerical solution. However,

using the first method, we are able to use our closed form solution of Eq. (4.29) at

each step. For doing this, we substitute Hiw, k
1
rm, k

1
zm, and k1

zm,ml at the previous step

by D, krm, kzm, and kzm,ml respectively at the next step. As a result, splitting the

water column perturbation into several steps approaches the final modal horizontal

wavenumber correction to the numerically computed values while keeping the logic

of our single-step solution valid at each step. As an illustration, the dot-dashed line

in Fig. 4-6 represents a five-step perturbation result with a thermocline displacement

of three meters at each step. Obviously, the multi-step perturbation provides good

agreement with the numerically computed wavenumber correction.

The behavior of the mode number dependence of the wavenumber correction

shown in Fig. 4-6 can also be treated by examining the shape of the mode func-

tions. Modes 3 – 5 at a frequency of 200 Hz for the background waveguide and inside
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Figure 4-9: Correction to the background horizontal modal wavenumber for frequen-
cies 100 Hz, 200 Hz and 400 Hz, due to internal wave of fifteen meter amplitude.

the wave are plotted in Fig. 4-7. Dashed and dotted lines on the plots represent

the water-bottom interface and the interface between water layers (the thermocline)

respectively. Mode 3 has an exponentially decaying tail in the mixed layer in both the

unperturbed (left panel) and perturbed (right panel) waveguides that corresponds to

an imaginary vertical wavenumber inside the mixed layer, γml,n. On the other hand,

mode 5 has a turning point inside the mixed layer at both panels, implying real γml,n.

Interestingly, mode 4 has an exponential tail in the unperturbed mixed layer, and

a turning point in perturbed mixed layer. Similarly to the bottom critical grazing

angle, defined by Eq. (3.25), that separates propagating modes from the continuous

spectrum, there is a critical grazing angle for the boundary between water layers,

θcrit,ml = cos−1
(

c0
cml

)

, (4.31)

that separates propagating modes into two groups. The first group is characterized

by grazing angles smaller than θcrit,ml, and consists of lower order modes (modes 1–3

in the example above) that are perfectly trapped in between the mixed layer and

the bottom half space. A small thermocline depression is ”felt” by these modes as
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an effective decrease in the depth of the waveguide, resulting in an increase of the

horizontal modal wavenumber contribution with mode number. The second group

of propagating modes with higher mode number (modes 4–12 in the example above)

has steeper than critical grazing angles, and is trapped between the surface and the

bottom half space, i.e. within the whole water column. For these modes, the impact

of the thermocline displacement is dominated by the number of turning points inside

the mixed layer, resulting in the oscillatory behavior of the horizontal wavenumber

contribution for higher mode numbers. Mode four in the example transits from the

first group into the second group as the thermocline depth lowers.

Figure 4-9 shows corrections for the modal horizontal wavenumbers for the same

scenario and frequencies 100 Hz, 200 Hz, and 400 Hz. As we see, the curves have

similar shapes, with approximately equal slopes for low the order modes. However,

the number of modes in each group, as well as the peak values of ∆krm, increase with

frequency.

4.3 Bottom Waves

In this section, we use our two-layer water column model to investigate the physics of

the modal wavenumber perturbation due to bottom waves. In analogy to the internal

waves approximation, bottom waves are modeled by a seabed elevation from z = Hbot

to z = Hbot −∆Hbot (Fig. 4-10). We desire to find an approximate expression for the

horizontal modal wavenumber perturbation amplitude ∆krm due to presence of such

a wave. Unfortunately, the normal mode perturbation theory that we used in Section

4.2 is not practical in this case, because it requires small relative sound speed changes
∆c(z)

c(z)
. The sound speed values in the shallow water seabed are typically at least

ten percent larger than the reference sound speed in the water. In addition, density

change increases plane wave impedance contrast even more, making the application

of the standard first order modal perturbation theory to our problem inaccurate.

An alternative approach is proposed by considering the transcendental equation

(Eq. (4.14)), and its linear perturbation due to a change in a water depth. For
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Figure 4-10: Bottom waves approximation by lifting the water-seabed interface.

shorthand, define

P (kzm) =

i
(ρbotkzm−ρ0kzm,bot)(i tan (kzm,mlD)kzm+kzm,ml)−(ρbotkzm+ρ0kzm,bot)e2ikzmD(i tan (kzm,mlD)kzm−kzm,ml)
(ρbotkzm−ρ0kzm,bot)(i tan (kzm,mlD)kzm+kzm,ml)+(ρbotkzm+ρ0kzm,bot)e2ikzmD(i tan (kzm,mlD)kzm−kzm,ml)

.
(4.32)

Similar to the perturbation by internal waves, we define the new horizontal modal

wavenumber and its correction by Eq. (4.17). Corresponding corrections to the

vertical wavenumbers for the upper mixed layer, lower layer, and bottom half space

are formally written as

∆kzm = k1
zm − kzm, (4.33)

∆kzm,ml = k1
zm,ml − kzm,ml, (4.34)

∆kzm,bot = k1
zm,bot − kzm,bot, (4.35)

where the new vertical wavenumbers k1
zm, k

1
zm,ml and k1

zm,bot are defined by Eqs. (4.18)-

(4.20). The transcendental equation for the modified waveguide is then

tan
(

k1
zm(Hbot −∆Hbot)

)

= P (k1
zm). (4.36)

By equating the linear terms of a Taylor series expansion applied to both sides of Eq.
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(4.36) and neglecting the second order term ∆kzm∆H, we get

(

1 + tan2 (kzmHbot)
)

(∆kzmHbot + kzm∆Hbot) ≈
dP (kzm)

dkzm
∆kzm. (4.37)

Assuming ∆krm << krm for small ∆Hbot, vertical wavenumber corrections for two

layers and bottom half space are related to the horizontal wavenumber correction by

linearizing Eqs. (4.18)-(4.20) as

∆kzm ≈ −krm
kzm

∆krm, (4.38)

∆kzm,ml ≈ − krm
kzm,ml

∆krm, (4.39)

∆kzm,bot ≈ − krm
kzm,bot

∆krm. (4.40)

With Eqs. (4.37) and (4.38), we get the first order correction to the horizontal modal

wavenumber

∆krm ≈ −k2
zm

krm

(1 + tan2 (kzmHbot))∆Hbot

(1 + tan2 (kzmHbot))Hbot − dP (kzm)
dkzm

. (4.41)

It can be shown using simple algebra and the linearized relations of Eqs. (4.39)-(4.40)

that

dP (kzm)
dkzm

=

−4ie2ikzmD
ρ0ρbot

k2
zm,bot

−k2zm

kzm,bot
(k2zm,ml

+tan2 (kzm,mlD)k2zm)+i(ρ20k2zm−ρbotk
2
zm)

k2zm−k2
zm,ml

kzm,ml
(tan (kzm,mlD)−kzm,mlD)

[(ρbotkzm−ρ0kzm,bot)(i tan (kzm,mlD)kzm+kzm,ml)+(ρbotkzm+ρ0kzm,bot)e2ikzmD(i tan (kzm,mlD)kzm−kzm,ml)]
2
.

(4.42)

From numerical computations we have noticed that for small bottom wave amplitudes

and low frequencies (typically less than 500 Hz),

dP

dkzm
<<

(

1 + tan2 (kzmHbot)
)

Hbot. (4.43)

This simplifies our solution to

∆krm ≈ −k2
zm

krm

∆Hbot

Hbot

. (4.44)
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Figure 4-11: Correction to the background horizontal modal wavenumber for fre-
quency 200 Hz due to presence of bottom wave of one meter amplitude, computed
numerically (solid line), using linear approximation (4.41) (dot-dashed line), and us-
ing simplified linear approximation (4.44) (dashed line).

It is easy to show that Eq. (4.44) also describes the modal wavenumber correction

due to seafloor elevation in an ideal waveguide with homogeneous sound speed c0

and depth Hbot. Thus, in shallow water the first order modal wavenumber response

to bottom waves of small amplitude is governed by the equivalent response in an

isovelocity waveguide with a hard bottom.

Let us return to the example of our two-layer waveguide model discussed in previ-

ous sections and consider a bottom wave of one meter amplitude. Figure 4-11 shows

the numerical solution for the modal horizontal wavenumber correction (solid line)

at frequency 200 Hz, its linear approximation defined by Eq. (4.41) plotted with a

dashed line, and the reduced approximation of Eq. (4.44) plotted with a dot-dashed

line. As we see from the figure, although omitting
dP

dkzm
term provides a slight de-

viation of the approximate solution from the exact numerical solution for modes 6,

7, and 12, all three curves are in good agreement. Unlike what we have seen for

internal waves, bottom waves provide a gradual monotonic increase of the horizontal

wavenumber correction amplitude with mode number.
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Figure 4-12: Correction to the background horizontal modal wavenumber for frequen-
cies 100 Hz, 200 Hz and 400 Hz, due to bottom wave of one meter amplitude.

Figure 4-12 shows numerically computed wavenumber corrections at frequencies

100 Hz, 200 Hz and 400 Hz. As one can see, the gradually increasing trend of the

wavenumber perturbation magnitude with mode number predicted by Eq. (4.44) is

seen for all considered frequencies.

4.4 Surface Waves

Following the logic of Sections 4.2 and 4.4, we approximate ocean surface waves of

amplitude ∆Hsur for our two-layer model as a depression (wave trough), and elevation

(wave crest) of the free surface as shown in Fig. 4-13. As before, we seek the first order

correction to the amplitude of the modal wavenumber perturbation caused by these

waves. We note that both wave crests and wave troughs represent a displacement

of the free surface, and therefore, separate expressions for reference horizontal modal

wavenumber corrections should be obtained for them. In order to do that, we split the

water column perturbation due to the wave crest (trough) into two steps: depression

(elevation) of the thermocline by ∆Hsur/2 followed by the increase (decrease) of

the water column depth by ∆Hsur/2. The top and bottom panels of Fig. 4-14
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Figure 4-13: Ocean surface waves approximated by elevation and depression of the
ocean surface.

schematically show a two step perturbation of the background water column due to

surface wave crest and trough respectively. For the wave crest, the first step can be

represented as an internal wave of amplitude ∆Hsur/2, and its contribution to the

modal wavenumber is determined by Eq. (4.29):

∆kcrest
rm,step 1 ≈ −2

|Am|2ω2∆c

krmc30ρ0













∆Hsur

2
+

sin
(

kzm
∆Hsur

2

)

cos

(

2 tan−1

[

kzm,ml

kzm tan (kzm,mlD)

]

+ kzm
∆Hsur

2

)

kzm













. (4.45)

At the second step, we note that the impact of a bottom depression by ∆Hsur/2 on

modal wavenumber, corrected at the first step, is exactly opposite to a bottom wave

of the amplitude ∆Hsur/2. Therefore, by using Eq. (4.41) and substituting ∆Hbot by

−∆Hsur/2, we get the second step wavenumber correction:

∆kcrest
rm,step 2 ≈

ω2

c2
0

−
(

krm +∆kcrest
rm,1

)2

krm +∆kcrest
rm,1

∆Hsur

2Hbot

. (4.46)

By neglecting second order terms ∆kcrest
rm,step 1∆Hsur, this reduces to

∆kcrest
rm,step 2 ≈

k2
zm

krm

∆Hsur

2Hbot

. (4.47)
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Figure 4-14: Schematic view of two steps water column perturbation due to surface
wave crest (trough): thermocline depression (elevation) by ∆Hsur/2 followed by the
water depth increase (decrease) by ∆Hsur/2
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The total first order horizontal modal wavenumber contribution by the wave crest is

then

∆kcrest
rm ≈ −2

|Am|2ω2∆c

krmc30ρ0









∆Hsur

2
+

sin
(

kzm
∆Hsur

2

)

cos
(

2 tan−1

[

kzm,ml

kzm tan (kzm,mlD)

]

+ kzm
∆Hsur

2

)

kzm









+
k2
zm

krm

∆Hsur

2Hbot

.

(4.48)

By analogy, applying two steps with the opposite perturbations of the background

environment for small ∆Hsur, the horizontal modal wavenumber correction for wave

trough is equal to that for a wave crest, but opposite in sign:

∆ktrough
rm ≈ −∆kcrest

rm . (4.49)

The amplitude of the total modal wavenumber variation in the presence of the surface

waves of amplitude ∆Hsur is the difference between the wavenumbers for the wave

trough and the wave crest:

∆krm = ∆ktrough
rm −∆kcrest

rm ≈

4
|Am|2ω2∆c

krmc30ρ0













∆Hsur

2
+

sin
(

kzm
∆Hsur

2

)

cos

(

2 tan−1

[

kzm,ml

kzm tan (kzm,mlD)

]

+ kzm
∆Hsur

2

)

kzm













− k2
zm

krm

∆Hsur

Hbot

.
(4.50)

The first term in Eq. (4.50) is positive, because it corresponds to an effective elevation

of the thermocline by the value ∆Hsur. Similarly to depression internal waves, it

increases in amplitude up to a certain mode number, following by oscillations (see

discussions in Section 4.2 for details). The second term has a negative value, and its

wavenumber contribution is equal to that of bottom waves of amplitude ∆Hsur.

Let us return to the example of the waveguide discussed in the previous sections

with surface waves of one-meter amplitude (∆Hsur = 1 m). Figure 4-15 shows a good

agreement between the numerical solution for the total horizontal modal wavenumber

variation (solid curve) and its first order perturbation (dashed curve) defined by Eq.

(4.50) at frequency 200 Hz. Some slight deviation between the exact and approximate

solutions for modes 5, 6, and 12, also noted for the perturbation due to bottom
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waves in the same waveguide, is caused by using the reduced form of the wavenumber

perturbation (Eq. (4.44)) by bottom waves (see Section 4.3 for details). Interestingly,

unlike the case of internal waves or bottom waves, the curves have zero initial slope,

i.e. for low order modes, the two terms in Eq. (4.50) have opposite values and cancel

each other. Physically, this implies that these modes have vertical grazing angles less

than the mixed layer critical angle defined by Eq. (4.31). They are trapped between

the mixed layer and the bottom half space, and therefore, small perturbations of the

ocean surface have no impact on the horizontal wavenumbers of these modes. Higher

order modes have turning points in the mixed layer, and are affected by mutual effect

of the effective thermocline displacement and the change in water depth. As a result,

we see an increase in wavenumber perturbation amplitude with fluctuating slope for

mode numbers higher than 4.

Figure 4-16 shows the numerical solution for the modal wavenumber variation at

frequencies 100 Hz, 200 Hz and 400 Hz. It is noted that at higher frequencies, there are

more modes unaffected by the presence of surface waves. This follows from the closer

spacing of the vertical modal wavenumbers and the corresponding modal vertical

grazing angles. Fluctuation of the curve slope caused by effective displacement of

the thermocline is also more noticeable for higher frequency. Thus, with increasing

frequency, the impact of the effective thermocline displacement (the first step in the

water column perturbation due to surface waves) on horizontal modal wavenumber

becomes stronger. In fact, at frequency 100 Hz, there is almost no difference between

the wavenumber perturbation due to surface waves and due to bottom waves of the

same amplitude (see 100 Hz curve in Fig. 4-12 for comparison).
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Figure 4-15: Modal wavenumber variation amplitude for frequency 200 Hz due to
the presence of surface waves with one meter amplitude. The numerical solution is
plotted with a solid line; the dashed line represents the first order approximation.
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Figure 4-16: Numerical solution for the modal wavenumber variation amplitude at
frequencies 100 Hz, 200 Hz and 400 Hz, due to presence of surface waves with one
meter amplitude.
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Chapter 5

Acoustic Propagation in Presence

of Infinitely Long Parallel Waves

In the real ocean, each of the types of waves we consider is characterized by finite

crest lengths and horizontal curvature of the wave fronts. In order to understand

the physics of low frequency acoustic interaction with the realistic wave fields, it

is essential to first determine the mechanisms that govern acoustic propagation in

presence of idealistic waves with infinitely long parallel crests. In this section, we will

examine three-dimensional acoustic effects that occur in presence of ocean internal

waves, bottom sediment waves and surface waves in shallow water. As before, we will

use the normal mode approach for representation of the pressure field and examine

the effects of normal mode coupling, refraction, ducting and antiducting in presence

of one or several parallel waves of any of the three types.

5.1 Horizontal Modal Critical Angle

Consider the example of a horizontally stratified shallow water waveguide with iden-

tical waves that have infinitely long crests parallel to the x-axis (Fig. 5-1). Define

unperturbed modal wavenumber (outside of the waves) by k0
rn and its most perturbed

value by k1
rn (along the wave crest), such that modal horizontal wavenumber at arbi-
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trary point in horizontal plane satisfies

k0
rn ≥ krn (x, y) ≥ k1

rn.

Note that perturbed modal horizontal wavenumber is less than its unperturbed value,

because we define perturbation by either bottom elevation (bottom wave), thermo-

cline depression (internal wave), or surface depression (surface wave). Also note that

we use index n in this chapter to denote the number of the initial mode. We don’t

specify the wave type for now, but we assume that the width of the wave is wide

enough and changes of the horizontal modal wavenumber across the wave are small

enough so that the adiabatic approximation is valid. For such environments, it is

convenient to use the ”Vertical Modes - Horizontal Rays” formalism of Weinberg and

Burridge [36] for studying the acoustic pressure field. In this approach, each normal

mode propagates along a horizontal ray defined by the eikonal equation

sn = ŝnkrn (x, y) , (5.1)

where

dsn
dsn

= ∇Hkrn (x, y) , (5.2)

ŝn (x, y) is the unit vector in the local ray direction of mode n, dsn is the incremental

length along the ray path, and ∇H is the two-dimensional gradient.

Let us put an acoustic source outside of the wave and define the horizontal modal

grazing angle χn (not to be confused with the vertical grazing angle in Chapter 3)

as the angle between the direction of the modal ray and the direction of the wave

crest (Fig. 5-1). Note that in this geometry, the horizontal modal wavenumber is a

function of the y-coordinate only. By the method of characteristics, Eq. (5.2) reduces

to

d

ds

(

krn
dy

ds

)

=
dkrn
dy

. (5.3)
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Figure 5-1: Top view of the infinitely long waves (for example, internal waves) with
crests or troughs parallel to the x-axis. The horizontal wavenumber of mode n is
schematically shown in gray shading. The white unshaded region corresponds to the
background unperturbed waveguide with wavenumber k0

rn; the wave crest is charac-
terized by the perturbed value k1

rn. The horizontal grazing angle of a modal ray is
defined as the angle between the direction of the mode n ray and the direction of the
wave crest. Modal rays incident from the source are divided into two groups. Rays
from the first group are characterized by smaller than critical horizontal grazing angles
and are refracted by the first wave back into the half space of positive y-values. The
second group of rays have steeper than critical horizontal grazing angles. These rays
penetrate through the waves and propagate into the half space of negative y-values.
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Consider the ray of mode n launched with grazing angle χn. The directional vector

ŝn then has initial coordinates

ŝn = (cos (χn), sin (χn)) . (5.4)

As the ray propagates through the wave, its direction changes according to Eq. (5.3).

There exists a critical horizontal grazing angle,

χcrit,n = cos−1

(

k1
rn

k0
rn

)

, (5.5)

that separates the rays of mode n into two groups. Rays with smaller than critical

launched grazing angles are turned by the leading wave back into the half space of

positive y-values (blue ray in Fig. 5-1). The second group of rays with steeper grazing

angles do not have turning points and penetrate through the waves into the half space

of negative y-values (black ray in Fig. 5-1).

The horizontal critical angle is a very important parameter of the physical mecha-

nisms that govern three-dimensional normal mode horizontal refraction due to shallow

water waves. Before proceeding to the latter, we return to our waveguide model. For

consistency, we use the parameters of the unperturbed waveguide and wave ampli-

tudes from the previous chapter (c0 = 1500 m/s, cml = 1530 m/s, cbot = 1800 m/s, ρ0

= 1000 kg/m3, ρbot = 2000 kg/m3, Hbot = 80 m, D = 15 m, ∆Hiw = 15 m, ∆Hbot = 1

m and ∆Hsur = 1 m). Using Eq. (5.5) and the wavenumber corrections found in the

previous chapter, the horizontal critical angles are shown in Fig. 5-2 for frequencies

100 Hz, 200 Hz and 400 Hz. As one can see from this figure, the critical angle has the

same signature of mode number dependence as the modal wavenumber corrections

(see Figs. 4-9, 4-12, and 4-16). In particular, the highest value of the horizontal

critical angle for the internal wave corresponds to the mid-number normal modes,

after which it oscillates with decreasing amplitude. On the other hand, horizontal

critical angle for the other two types of waves show monotonic increase with the mode

number. One also notes that unlike the case of wavenumber corrections, the greatest

value of the critical angle is relatively constant for the considered frequency range.
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Figure 5-2: Horizontal critical angles associated with internal waves of fifteen meter
amplitude (upper panel), bottom wave of one meter amplitude (middle panel) and
surface wave of one meter amplitude (lower panel). Parameters of the waveguide are:
c0 = 1500 m/s, cml = 1530 m/s, cbot = 1800 m/s, ρ0 = 1000 kg/m3, ρbot = 2000
kg/m3, Hbot = 80 m, D = 15 m. Wave amplitudes are: ∆Hiw = 15 m, ∆Hbot = 1
m and ∆Hsur = 1 m. Blue dashed line shows the observed 4 deg fluctuation of the
angle of arrival due to presence of internal waves (see Chapter 2).
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For examples shown here, the maximum critical angle for all waves with specified

amplitudes is approximately 5.5 degrees. We refer the reader’s attention to the value

of 4 deg of the observed amplitude of the angle of arrival fluctuations marked as a

blue dashed line(Chapter 2). Although larger amplitude internal waves were observed

during SW06 experiment, one can see that even for fifteen meter amplitude internal

waves most of the modes have approximately 4 deg or greater critical angles. The

lower two panels (for the other two types of waves) preliminarily indicate that only

high order modes are very refractive for the wave amplitudes provided.

5.2 Sharp Interface Approximation

In shallow water, significant horizontal changes of the water column and seabed prop-

erties can often happen over relatively short distances compared to the low frequency

acoustic wavelength, and the adiabatic approximation becomes no longer valid. Non-

linear internal waves [4, 38], giant bottom waves [23], or large surface swell waves [27]

are good examples for this. For the case of internal waves, low frequency acoustic

propagation has been traditionally divided into four regimes [39] depending on the

horizontal grazing angle. Figure 5-3 schematically shows internal waves with infinitely

long parallel crests and the corresponding horizontal grazing angle sectors. For steep

horizontal grazing angles, water column properties change rapidly along the direction

of the acoustic track, and mode coupling (MC) is expected to be strong. As the

grazing angle decreases, mode coupling weakens and acoustic propagation becomes

nearly adiabatic (AD) with horizontal refraction (HR) and focusing (HF) dominating

at the propagation directions nearly parallel to the IW crests.

The division into sectors shown in Fig. 5-3 is purely qualitative, since the strength

of mode coupling changes gradually with the grazing angle and depends upon the

waveguide parameters and the acoustic frequency. It is our goal in this chapter to

explore the effects of acoustic propagation in the presence of one or more parallel

waves and determine the actual importance of mode coupling or the sufficiency of

the adiabatic approximation for various grazing angles. To do this, we will introduce
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Figure 5-3: Schematic diagram showing traditional division of acoustic propagation
into four sectors of grazing angles, having different propagation regimes: strong mode
coupling (MC), nearly adiabatic propagation (AD), horizontal refraction (HR), and
horizontal focusing (HF).

an idealized wave model. In this model, we replace the smooth change in the water

column properties due to a single infinitely long wave, as considered in the previous

section, by a ”pair of steps” so that the domain is divided into three range independent

regions A, B and C by infinitely long vertical interfaces parallel to the x-axis (Fig.

5-4). Regions A and B have an identical background water column, and region C

has width W and the water column properties of the wave crest. In this waveguide

water column, the properties change sharply at the vertical interfaces dividing regions

A, B, and C. This is called the sharp interface approximation (SIA), and the waves

with corresponding shapes are called SIA waves. Figure 5-5 illustrates SIA internal,

bottom and surface waves in the example of our two-layer waveguide model. SIA

waves have been previously used for describing the physics of two-dimensional mode

coupled propagation through nonlinear internal waves at normal incidence [4, 40].

In three-dimensional acoustics, the SIA was used under the adiabatic approximation

by Lin et. al. [18] to describe the effects of horizontal acoustic ducting in between

internal waves and by McMahon for theoretical studies of Horizontal Lloyds Mirror

effect [41]. In the following sections, we will consider three-dimensional mode coupling
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Figure 5-4: Idealized wave constructed by the two sharp vertical interfaces separated
by distance W .
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Figure 5-5: Schematic diagram showing sharp interface approximation (SIA) of in-
ternal waves, bottom waves and surface waves in the two-layer waveguide model.

in presence of infinitely long SIA waves.

The SIA has an advantage of its simplicity as it replaces the problem of continuous

modal refraction and coupling with discrete modal refraction and coupling at several

vertical interfaces. As we will see in the next section, it allows us to incorporate

the geometric approximation for low frequency coupled mode horizontal propagation.

Note that the SIA wave is characterized by abrupt changes of the modal character-

istics at all grazing angles. Therefore, the strength of mode coupling effects caused

by SIA waves is assumed to be overestimated in comparison to the latter in pres-

ence of realistic waves having smooth shapes. We will use SIA waves approach for

semi-quantitative studying the effects of acoustic reflection, ducting, tunneling and

coupling in the presence of one or several infinitely long parallel waves. The quan-

titative importance of these effects in presence of waves that have smooth canonical

shapes will be evaluated numerically in the Section 5.6.
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5.3 Coupled Reflection and Transmission of Nor-

mal Modes at a Sharp Interface

We begin with the fundamental problem of coupled normal mode reflection from and

transmission through a single sharp interface. This scenario corresponds to infinite

width of the region B inside the SIA wave (W = ∞) in Fig. 5-4. Region A is

associated with the unperturbed horizontal modal wavenumbers k0
rn and the normal

mode set Ψ0
n (z), and region B has values k1

rn and Ψ1
n (z) perturbed by the wave crest

respectively. We wish to get the full mode coupled solution for a point source located

in the region A. To do this, we first consider mode coupled reflection and transmission

for individual plane waves, and then perform a plane wave decomposition of the

incident point source field.

5.3.1 Plane wave mode coupling

When studying the effects of mode coupling, it is a standard practice [42, 4] to consider

incident field due to each of excited normal modes separately. We let the acoustic

signal be a single mode n plane wave of unit amplitude at angular frequency ω, and

be incident upon a sharp interface from region A with grazing angle χn (Fig. 5-6).

The incident pressure field can be written as

pI = Ψ0
n (z) e

ik0rn(x cosχn−y sinχn) (5.6)

In order to match the continuity of the acoustic pressure and the normal component

of particle velocity at the sharp interface,

pI (x, y = 0, z) + pR (x, y = 0, z) = pT (x, y = 0, z) ,

1

ρ0 (z)





∂pI
∂y

∣

∣

∣

∣

∣

y=0

+
∂pR
∂y

∣

∣

∣

∣

∣

y=0



 =
1

ρ1 (z)

∂pT
∂y

∣

∣

∣

∣

∣

y=0

,
(5.7)

where ρ0 (z) and ρ1 (z) are the density profiles in the regions A and B respectively.

One must also allow reflected and transmitted fields, pR and pT , to comprise all the
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Figure 5-6: Plane wave mode coupling at the sharp interface. Incident pressure
field consists of the single mode n of unit amplitude with grazing angle χn. Along the
interface, it couples into all propagating modes 1..M of both reflected and transmitted
fields.

propagating modes, i.e.

pR =
M
∑

m=1

Rnm (χn)Ψ
0
m (z) eik

0
rm(x cosχm,R+y sinχm,R),

pT =
M
∑

m=1

Tnm (χn)Ψ
1
m (z) eik

1
rm(x cosχm,T−y sinχm,T ),

(5.8)

where Rnm and Tnm are the coefficients of the plane wave reflection and transmission

of incident mode n into mode m and M is the number of propagating modes. We

made an assumption here of small waveguide perturbations at the interface, and

therefore neglected associated continuous part of the spectrum. The case of modal

energy leakage into the continuous part of the spectrum for surface waves will be

discussed in Chapter 7.

The boundary conditions given by Eq. (5.7) provide continuity of the x-component

of the horizontal wavenumber (Snell’s law) of both the reflected and transmitted

modes,

kx ≡ k0
rn cosχn = k0

rm cosχm,R = k1
rm cosχm,T , m = 1..M, (5.9)

where χm,R and χm,T are the grazing angles of the reflected and transmitted coupled
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modem. They also provide linear relations for the coupled reflection and transmission

coefficients,

δnm +Rnm (χn) =
M
∑

k=1

Tnk (χn)
∫ Ψ1

k (z)Ψ
0
m (z)

ρ0 (z)
dz, m = 1..M,

δnm tanχn −Rnm (χn) tanχm,R =
M
∑

k=1

Tnk (χn) tanχk,T

∫ Ψ1
k (z)Ψ

0
m (z)

ρ0 (z)
dz, m = 1..M,

(5.10)

where δnm is the Kronecker symbol.

As an example, Fig. 5-7 shows dependence of the absolute values of Rnm (top

panel) and Tnm (bottom panel) on grazing angle χn for incident mode three (n = 3),

frequency 100 Hz, three-layer water column example from the previous chapter (c0 =

1500 m/s, cml = 1530 m/s, cbot = 1800 m/s, ρ0 = 1000 kg/m3,ρbot = 2000 kg/m3,

Hbot = 80 m and D = 15 m) and the waveguide perturbation due to a large twenty

five meter amplitude internal wave. In this example, the horizontal critical angle of

incident mode three is 6.4 degrees. As one would expect, the reflection coefficient

R33 rises rapidly as the grazing angle of mode three approaches its critical value.

However, the reflection of mode three is not perfect at shallower than critical angles

(note red curve below unity in the upper panel for χ3 < 6.4 deg). At these grazing

angles for incident mode three, the lower order modes (one and two) have real valued

y-components of the horizontal wavenumber defined as

k0 (1)
ym ≡















√

(

k
0 (1)
rm

)2 − k2
x, |kx| ≤ k0 (1)

rm ,

i

√

k2
x −

(

k
0 (1)
rm

)2
, |kx| ≥ k0 (1)

rm

(5.11)

in both half spaces A and B. Therefore, even at subcritical grazing angles for mode

three, energy leakage occurs by means of mode coupling. In contrast, higher order

modes are evanescent at these angles, and their amplitudes decay exponentially with

distance from the sharp interface. As the grazing angle of incident mode three in-

creases, higher order modes become propagating one by one in both regions A and

B, and energy coupled into these modes propagates away from the interface (note the

spikes in R3m and T3m for m = 4, 5, 6, 7 at grazing angles 14, 22, 28 and 25 degrees).
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Figure 5-7: Absolute values of the plane wave coupled reflection coefficient Rnm

(top panel) and transmission coefficient Tnm (bottom panel) for incident mode three
(n = 3) and frequency 100 Hz for a sharp interface between background waveguide
model (c0 = 1500 m/s, cml = 1530 m/s, cbot = 1800 m/s, ρ0 = 1000 kg/m3, ρbot = 2000
kg/m3, Hbot = 80 m and D = 15 m) and a perturbation due to a twenty five meter
amplitude internal wave.
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Figure 5-8: Same as in Fig. 5-7, but for mode one incident.
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Figure 5-8 illustrates the same scenario, but for mode one incident. Unlike previ-

ous example, incident mode one in this case is perfectly reflected at grazing angles

below its critical value of 5.9 degrees, since all other modes at these grazing angles

have imaginary y-components of horizontal wavenumber in both half spaces A and

B and are therefore evanescent. Both examples show relatively constant mode cou-

pling transmission coefficients for the wide range of steep grazing angles. Reflection

coefficients are negligibly small in this grazing angle range.

Similar analyses for internal waves with amplitudes of up to forty meters and bot-

tom waves and surfaces waves with amplitudes of up to four meters for the frequency

range 100-500 Hz showed that magnitude of reflection coefficient for any incident

mode n as well as for any coupled mode pair (n,m) is less than 0.01 for the wide

range of steep grazing angles (typically 35 - 90 degrees). Therefore, backscattering of

the normal modes from the types of waves we consider is believed to be small in our

applications.

5.3.2 Point Source Solution

Having solved the mode coupling problem at a single sharp interface for a single

incident modal plane wave, it is possible to derive the acoustic pressure field on both

sides of the sharp interface due to a point source located in region A at (0, ys, zs). By

applying the one-dimensional inverse Fourier transform (I.F.T.) operator,

I.F.T.{·} =
1

2π

∞
∫

−∞

{·}e−ikxxdx, (5.12)

to both sides of Eq. (3.33), we get a two-dimensional separable Helmholtz equation:

ρ
∂

∂y

[

1

ρ

∂p

∂y

]

+ ρ
∂

∂z

[

1

ρ

∂p

∂z

]

+

[

ω2

c2
− k2

x

]

p (kx, y, z) = −δ (y − ys) δ (z − zs)

2π
. (5.13)

As before, we start with considering a portion of acoustic energy due to the excitation

of a single mode. The solution of Eq. (5.13) for an excited mode n can be formally
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written as

p̃n (kx, y, z) =























M
∑

m=1

[

Φ0+
nme

ik0ym(kx)y + Φ0−
nme

−ik0ym(kx)y
]

Ψ0
m (z) + p̃sn (kx, y, z) , y ≥ 0,

M
∑

m=1

[

Φ1+
nme

ik1ym(kx)y + Φ1−
nme

−ik1ym(kx)y
]

Ψ1
m (z), y < 0,

(5.14)

where the single mode free-field source term p̃sn is obtained by applying the I.F.T.

operator to both sides of Eq. (3.14) and leaving the mode n term only,

p̃sn (kx, y, z) =
i

4πρ (zs)
Ψ0

n (zs)Ψ
0
n (z)

eik
0
yn(kx)|y−ys|

k0
yn (kx)

, (5.15)

Φ0 (1)+
nm and Φ0 (1)−

nm are the amplitudes of mode m coupled from the incident mode n

and traveling in the positive and negative directions of y-axis respectively in region

A (B). The Sommerfeld radiation condition requires that

Φ0−
nm = 0, m = 1..M

Φ1+
nm = 0, m = 1..M.

(5.16)

It follows from the boundary conditions and Eqs. (5.10) that

Φ0+
nm (kx) =

i

4πρ (zs)

Ψ0
n (zs) e

ik0ynys

k0
yn

Rnm (χn) ,

Φ1−
nm (kx) =

i

4πρ (zs)

Ψ0
n (zs) e

ik0ynys

k0
yn

Tnm (χn) .

(5.17)

Acoustic pressure as a function of x is obtained by applying the one-dimensional

Fourier Transform (F.T.) operator,

F.T.{·} =

∞
∫

−∞

{·}eikxxdx, (5.18)

to both sides of Eq. (5.14). Using Eqs. (5.17) and (5.16), the Fourier integral is

evaluated for each coupled mode m at its stationary points ks
x (n,m). As a result, the

acoustic pressure due mode n excited at the source location approximates to
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Figure 5-9: Geometrical approximation of the coupled mode horizontal reflection from
and transmission through the sharp interface.

pn (x, y, z) ≈



































































i

4ρ (zs)
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0
n (z)H
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0

(

k0
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+

+
Ψ0

n (zs) e
iπ/4
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√
8π

M
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m=1

Rnm (χs
n)Ψ

0
m (z)

exp{i (k0
rnr1 + k0

rmr2)}
(

k0
rnr1 +

(

k0yn
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)2

k0
rmr2

)1/2
, y ≥ 0,

Ψ0
n (zs) e

iπ/4

ρ (zs)
√
8π

M
∑

m=1

Tnm (χs
n)Ψ

1
m (z)

exp{i (k0
rnr1 + k1

rmr2)}
(

k0
rnr1 +

(

k0yn
k1ym

)2

k1
rmr2

)1/2
, y < 0,

(5.19)

where

χs
n (m) = cos−1 k

s
x (n,m)

k0
rn

(5.20)

is the grazing angle of mode n coupled into mode m for the stationary value ks
x (n,m),

r is the distance between the source and the receiver, r1 (n,m) and r2 (n,m) are the

lengths of the two-leg refracted eigenray connecting the source and the receiver such

that

r1 =
ys

sinχs
n (m)

, r2 =
|y|

sinχs,coupled
m (n)

, (5.21)
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and

χs,coupled
m (n) =



















cos−1 k
s
x (n,m)

k0
rm

, y ≥ 0,

cos−1 k
s
x (n,m)

k1
rm

, y < 0
(5.22)

is the grazing angle of the reflected (or transmitted) modem coupled from the incident

mode n for the stationary point ks
x (n,m). Due to linearity of the governing Helmholtz

equation (3.33), total acoustic pressure field excited by a point source is equal to a

sum of its components due to each excited mode:

p (x, y, z) =
M
∑

n=1

pn (x, y, z). (5.23)

Equations (5.19) and (5.23) represent a geometrical acoustic approximation to

coupled mode propagation in the horizontal plane. Once the eigenray for the mode

pair (n,m) is found from Eqs. (5.20) - (5.22), the acoustic pressure is easily computed.

Figure 5-9 schematically illustrates the direct and reflected eigenrays for the source

and receiver located on one side of the sharp interface (the first and second terms in

Eq. (5.19) respectively for y ≥ 0), and the transmitted eigenray for the source and

the receiver located on the opposite sides of the sharp interface for the mode pair

(n,m).

Geometrical approximation of the coupled mode horizontal propagation is a use-

ful tool that allows us to study the effects of mode coupling for more complicated

environments.

5.3.3 Horizontal Lloyd’s Mirror

In this section, we will illustrate coupled mode reflection from and transmission

through the sharp interface with Eq. (5.19). As before, we use the background water

column model from previous examples and its perturbation due to a twenty-five meter

internal wave. Figure 5-10 shows normal mode amplitudes for the incident field con-

sisting entirely of mode three due to a point source with coordinates (xs, ys) = (0, 500)
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m and frequency of 100 Hz. Mode three has a unit amplitude at one meter distance

from the source (0 dB re 1 m). The panel with mode three receptions shows an inter-

esting pattern at positive values of y, which is the result of the interference between

direct and reflected arrivals (first and second terms of Eq. (5.19) for positive values

of y respectively). This pattern is known as ”horizontal Lloyd’s mirror” (HLM) [43].

The classical Lloyd’s mirror effect [44, 45] is a dipole-like interference of a direct and

reflected path from the sea surface path in the vertical r-z plane. The HLM pattern

differs from the classical Lloyd’s mirror in that it happens in the horizontal plane

and that reflection from the wave interface is only important at the subcritical graz-

ing angles. In classical Lloyds mirror, reflection from the sea surface is considered

perfect at all vertical grazing angles. Another difference is the cylindrical spreading

in the HLM as opposed to the spherical spreading in the classical Lloyd’s mirror.

Recent work by McMahon [41] provides theoretical studies of the HLM for straight

and curved nonlinear internal wave fronts under the adiabatic approximation. Badiey

et. al. recently demonstrated experimental evidence of the HLM effect after careful

processing of the SW06 data [46, 15]. Our goal in this section is to study the effects

of mode coupling accompanying the HLM.

By looking at the amplitudes of the other modes, we first notice that the most

of the coupled energy is concentrated in neighboring modes two and four. This is

consistent with the theoretical results by Tindle [42, 37] showing that the coupling

strength between mode pair (m,n) for small waveguide perturbations is proportional

to [k2
rm − k2

rn]
−1
. The strongest mode coupling between neighbor modes was also

ordinarily observed for all three types of waves within wide range of amplitudes, via

our numerical modeling in Section 5.6. Coupled mode energy transmitted through the

interface has an interesting angular distribution. Maximum amplitude of all coupled

modes is in the direction parallel to the y-axis (perpendicular to the sharp interface).

Coupled modes with numbers higher than the incident mode number show a gradual

decrease of the transmitted field amplitude with decreasing grazing angle (mode four

in our example). Amplitudes of the transmitted lower order coupled modes initially

decrease with grazing angle, followed by a narrow angular range of slightly increased
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amplitude (note the uneven decrease of the amplitude of the transmitted mode two as

its grazing angle decreases in Fig. 5-10). This beam with increased modal amplitude

corresponds to the subcritical grazing angles of incident mode three, and illustrates

the non-perfect reflection of the initial mode three at its subcritical grazing angles.

Another interesting feature to notice from Fig. 5-10 is the coupled reflection

from the sharp interface. Amplitudes of both modes two and four show distinct

reflected beams. The angular spectrum of these beams is narrow, which is also shown

by the relatively narrow spikes of the coupled reflection coefficients in Fig. 5-7. The

maximum amplitude for the reflected coupled modes in this example is approximately

12 dB weaker than the amplitude level of the HLM pattern. As was noticed in the

previous section and illustrated above, reflection coefficient Rnn has less than unity

magnitude for n > 1, even at subcritical grazing angles, caused by the energy leakage

into both transmitted and reflected coupled modes. It was concluded during our

numerical simulations that this leakage is small compared to the mean amplitude in

the HLM pattern of the incident mode. For comparison, Fig. 5-11 shows plots similar

to Fig. 5-10, but for mode one incident. Mode one is the lowest order mode and is

perfectly reflected below its critical angle as shown in Fig. 5-8. The locations of the

maxima and minima of the modal amplitudes in the HLM patterns are different for

these cases, but the values of the maximum amplitudes are nearly equal.

We again note that the SIA gives overestimated values of the mode coupling

strength, and that the examples in Figs. 5-7 - 5-11 are shown for qualitative illus-

tration of the mode coupling physics. The actual importance of the mode coupling

effects will be evaluated numerically in Section 5.6 for more realistic smooth wave

shapes.
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Figure 5-10: Modal amplitudes for the case of mode three incident from a point source
located at (xs, ys) = (0, 500) m. There is a twenty five meter amplitude infinitely wide
internal wave with its sharp interface along y = 0.
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Figure 5-11: Same as in Fig. 5-10, but for the mode one incident.
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5.4 Mode Coupled Reflection and Transmission

Through SIA Wave

Let us return to SIA waves with finite width W (Fig. 5-4). Addition of the second

sharp interface provides another vertical discontinuity, and mode coupling becomes

a more complicated problem. We first wish to understand how the width of the

SIA wave alters the HLM pattern and the amplitudes of the transmitted modes

as compared to the single sharp interface studied above. As before, a single mode

incident from a point source is considered. We noticed in the previous section that

mode coupling is strong at steep grazing angles and weak at shallow grazing angles. It

was also concluded from the reflection coefficient analysis that at steep grazing angles,

backscattering of incident and coupled modes is negligibly small for all three types

of waves. We will follow the logic of dividing the propagation regimes into angular

sectors [39] as shown in Fig. 5-3, but will use three sectors instead: steep, shallow

and intermediate grazing angles. In the first regime, mode coupling is dominant

and backscattering is neglected; in the second regime, adiabatic propagation with

horizontal refraction is assumed dominant and mode coupling is neglected; in the

third (transition) regime, intermediate grazing angles suggest that both horizontal

refraction and mode coupling should be considered.

A. Steep horizontal grazing angles

Coupled mode propagation perpendicular to the SIA internal wave crest directions

was studied in detail by Duda and Preisig [4] among others. We will discuss two major

effects of the coupling physics from their study: coupled cancellation and transparent

resonance. To begin, consider incident mode n partially coupled into mode m at

the front interface of the SIA wave (Fig. 5-12). In the cancellation regime, the

wave width W is short enough so that the relative phase difference between modes

n and m does not change significantly as they reach back interface of the wave, and

”uncoupling” occurs. In the transparent resonance regime, wave width is such that

the phase difference between modes n and m changes by an integer multiple of 2π as
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Figure 5-12: Mode coupling diagram for normal incidence of mode n upon a SIA wave.
Mode n partially couples into mode m at the front interface. At a certain resonant
width of the wave, mode m uncouples back into mode n at the back interface.

Figure 5-13: Mode coupling diagram for mode n incident upon a SIA wave a with
steep (other than normal) grazing angle. Weak refraction of the coupled modes at
these angles makes both broken-line rays coincide with each other and with a straight
(dashed) line. If one measures the modal intensities behind the wave along the arc
of steep grazing angles (magenta line), significant fluctuations will be noticed as the
effective width of the wave passes through its resonant values.

they travel across the wave:

W res ≈ πl

|k1
rn − k1

rm|
, l = 1, 2, .. (5.24)

As a result, energy of the mode n coupled into mode m at the front sharp interface

uncouples back into mode n at the back interface, similar to the cancellation regime.

Since only few significant (sometimes also called dominant) modes [4, 38] carry most

of the coupled energy within the SIA and smooth-shaped waves, uncoupling of the

mode m back into mode n will result in almost total uncoupling of mode m if either

of modes n or m is dominant.

For steep grazing angles, other than normal, it was shown for our three wave
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types (with the amplitudes and acoustic frequencies considered in the present work),

that horizontal refraction of coupled modal rays as governed by Eq. (5.22) is not

significant for grazing angles greater than 35-40 degrees. Interpreted another way,

the ray of mode n coupled into mode m inside the wave coincide with the ray of

mode n coupled to itself inside the wave (Fig. 5-13) and both of them lay on almost a

straight line. Therefore, the cancellation regime between initial mode n with grazing

angle χn and mode m happens when the projection of the wave width onto the ray

direction (effective wave width W eff ) satisfies the resonance condition:

W res,eff ≡ W

sinχn

≈ πl

|k1
rm − k1

rn|
, l = 1, 2, .. (5.25)

Both the cancellation regime and the transparent resonance regimes play impor-

tant roles in the intensity fluctuations behind a wave or a train of waves. If one mea-

sures the modal amplitudes behind a wave along a circle arc centered at the source

position (solid magenta line in the figure), significant fluctuations are expected as the

effective wave width passes through its resonant values.

B. Shallow horizontal grazing angles

At shallow grazing angles (typically below 10 degrees in our examples, and it could

be even less for smooth wave shapes), horizontal refraction is important, and mode

coupling is weak. For understanding the physics of the most noticeable effects, we

thus neglect mode coupling and assume an adiabatic single mode refraction at the SIA

wave interfaces for these angles. As we have seen, below critical angle χcrit,n, most

of the energy is reflected by the infinitely wide SIA wave (and under the adiabatic

approximation, total reflection occurs). Let us now return to the horizontal refraction

equation (Eq. 3.41) and apply the one-dimensional I.F.T. operator (Eq. (5.12)) to

its homogeneous part:

∂2Φn (y, kx)

∂x2
+
(

k2
rn (y)− k2

x

)

Φn (y, kx) = 0. (5.26)

The horizontal wavenumber krn (y) has a tophat-like shape for the SIA wave (Fig.

5-14). We consider a scenario similar to the Section 5.2 of a unit amplitude mode
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Figure 5-14: Tophat-like shape of the horizontal wavenumber in presence of the SIA
wave.

n with planar wave front, but incident upon the SIA wave of finite width W at

a subcritical grazing angle χn < χcrit,n, and with no mode coupling. Since k0
rn >

kx > k1
rn at subcritical grazing angles, Eq. (5.26) represents a standard problem of

particle transmission through a potential barrier in Quantum Mechanics [47, 48]. The

corresponding plane wave transmission coefficient is

Tn ≈ exp



−
W
∫

0

(kx − krn (y)) dy



, (5.27)

which for the SIA wave of width W is

Tn ≈ e−W(kx−k1rn). (5.28)

One can see that the transmission coefficient above is unity at critical angle, and

it rapidly decreases as the grazing angle becomes less than critical. Therefore, at

the subcritical grazing angles acoustic energy propagates through the wave, and the

angular spectrum of the transmitted modal amplitude is localized in a narrow angular

range just below its critical value. This effect is called horizontal tunneling. In ocean

acoustics, tunneling in the vertical plane was observed numerically by Jensen and

Schmidt [49] when studying Gaussian beam penetration through a sediment layer at

subcritical vertical grazing angles. Horizontal tunneling through internal waves has
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recently been decomposed into horizontal leaky modes of the horizontal ducts by Lin

et. al. [18, 19]. Energy leakage is an inherent property of the acoustic tunneling.

As a result, reflection from the wave becomes imperfect at subcritical grazing angles

under the adiabatic approximation.

C. Intermediate horizontal grazing angles

Horizontal refraction of normal modes in our examples was shown to be consid-

erable for grazing angles up to approximately thirty five degrees. In Section 5.2, we

also noticed that at grazing angles of mode n above χcrit,n, but within the range of

horizontal refraction, the coefficients of the plane wave coupled reflection Rnm and

of the transmission Tnm at the single sharp interface (Figs. 5-7 and 5-8) have their

maximum values near the grazing angle

χn ≈ cos−1 k
1
rm

k0
rn

. (5.29)

Above this angle, the coupled reflection coefficient Rnm falls rapidly to zero, allowing

a narrow beam of coupled mode energy to be reflected by the front wave interface.

The transmitted energy of coupled mode m propagates through the wave and couples

again at the back interface with no significant reflection. Below this angle, coupled

mode m is evanescent inside the wave. Similarly to the adiabatic tunneling through

the wave, below this angle the coupled energy of modem is also available for tunneling

through the wave, yielding additional energy leakage through wave. With realistic

smooth wave shapes, mode coupling is continuous across the wave. Therefore, we

see that the tunneling of the incident mode and mode coupled tunneling are strongly

interconnected effects in this range of grazing angles.

5.5 Horizontal Acoustic Ducting

The horizontal reflection of normal modes from wave interfaces at subcritical angles

was shown to cause significant contrasts in acoustic intensity compared to the ”no

wave” case. Bottom sediment waves, internal waves, and ocean waves of long period

101



s
Source

(a)

(b)

Figure 5-15: Upper panel: acoustic modal ducting for the source placed between two
idealized waves. Bottom panel: acoustic modal antiducting for a source located inside
an internal wave: modal rays nearly parallel to the wave crest are refracted out from
the wave with the critical grazing angle.

(swell) are usually observed in groups or trains of waves. Therefore, as an internal

wave or surface wave train propagates through the source location, or alternatively if

a mobile acoustic source passes through a train of waves, one would expect significant

intensity fluctuations in the ”close-to-along-crest” directions. Figure 5-15 schemat-

ically illustrates the effects of horizontal ducting and antiducting within a train of

waves. In the case of acoustic ducting, acoustic source is located between neighbor

crests of depression internal waves (or surface swell troughs or bottom wave crests).

This results in a part of the mode n energy confined within grazing angle range

[−χn,crit + χn,crit] being trapped by these waves due to (almost) total reflection at

subcritical grazing angles. Alternatively, if one puts an acoustic source inside an in-

ternal wave of depression, the horizontal ray of mode n with negligibly small initial

grazing angle is pushed out from the wave with grazing angle ±χn,crit. Also, ducting
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of the energy in between waves implies (almost) no cylindrical spreading compared

to the range independent environments. Contrariwise, antiducting has stronger than

cylindrical spreading.

Acoustic ducting is a major mechanism for fluctuations of the measured intensity

and thus propagation to longer ranges in the along shelf direction compared to the

”no waves” background scenario. Combination of ducting and antiducting events

creates very significant scintillations of the acoustic intensity. These effects were first

described for internal waves theoretically in [9] and numerically in [10, 8]. The first

experimental observations of these strong intensity fluctuations (6-10 dB) compared

to the ”no waves” case, with an along wave geometry for internal waves passing

over a fixed source and receiver, were made during the SWARM95 experiment [8]

and described in [50]. Later, the SW06 experiment was specifically configured for

measuring three-dimensional acoustic effects, and the intensity fluctuations in these

directions were commonly observed in presence of internal wave trains [12].

The physics of horizontal acoustic ducting and antiducting between infinitely long

parallel internal waves can be generalized to all of the three wave types. The major

difference between the types in this case is in the critical angle and its dependence on

the mode number, which was studied in Chapter 4. Characteristic features of the real

oceanic ducts for particular wave types, such as length, directional spread, curvature,

and mutual crossings will be discussed in hapters 6 and 7.

5.5.1 Secondary Ducting

If internal waves were perfect reflectors at subcitical grazing angles, one would expect

the intensity fluctuations in the along wave geometry to be much more than the

observed 6-10 dB [8], according to Figs. 5-10 and 5-11. There exist two mechanisms

allowing part of the acoustic energy to penetrate through the wave and be partially

trapped in a neighbor duct: horizontal mode tunneling and coupling. We will call

this type of ducting secondary ducting. Horizontal tunneling provides energy leakage

through the waves at subcritical grazing angles, as was discussed in Section 5.4. When

the tunneled acoustic signal encounters another wave, part of its energy is reflected,
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Figure 5-16: Secondary ducting due to mode tunneling. Partially ducted energy leaks
out from the duct at each interaction with the waves.

and another part is tunneled further in the same manner as through the first wave.

Ducted energy continues leaking at each consequent interaction with the waves (Fig.

5-16). With the adiabatic tunneled transmission coefficient given in Section 5.4, and

the conservation relation between reflection and transmission coefficients,

|Rn|2 + |Tn|2 = 1, (5.30)

we see that the amplitude of mode n in the secondary duct after l interactions with

the waves is proportional to

|Φn| = TnR
l
n ≈ e−W(kx−k1rn)

(

1− e−W(kx−k1rn)
)

l
2

. (5.31)

Leakage rate associated with tunneling is high at close to critical grazing angles. On

the other hand, the reflection coefficient is greater further from the critical grazing an-

gles. Therefore, angular spectrum of the acoustic field in the secondary duct narrows

as l increases.

Another mechanism that is responsible for secondary ducting is mode coupling.

We mentioned that coupling is weak near critical grazing angles. However, if mode n

is incident upon a SIA wave and has higher than critical grazing angle χn such that

χcrit,n < χn < cos−1

(

k1
rm

k0
rm

)

, (5.32)
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Figure 5-17: Secondary ducting due to mode coupling. Mode n couples ot front or
back or both interfaces of the wave into mode m with higher critical angle. At certain
grazing angles χn, transmitted coupled energy of mode m is ducted.

then weak coupling at the front or back (or both) interface of the wave into mode m

results in the ducting of mode m (Fig. 5-17). The most favorable mode pair (m,n) for

this effect will satisfy the following conditions: 1) wide angular range cos−1

(

k1
rm

k0
rm

)

−
χcrit,n and 2) noticeable coupling strength between modes m and n at these angles.

We will see in the next section, however, that although tunneled secondary ducting is

stronger than coupled secondary ducting, both effects are considered weak comparing

to the HLM or primary horizontal ducting. On the other hand, they are the only

known mechanisms that allow energy to penetrate through the wave at close to critical

grazing angles and to be partially trapped in the neighbor ducts. In Chapter 6, an

important application of secondary ducting will be shown for the case of crossing

internal wave structures.

5.6 Numerical Modeling

In this section, we will evaluate the three-dimensional effects of acoustic propagation

in presence of parallel internal waves, bottom sediment waves, and surface waves

having smooth ”canonical” shapes. Although this scenario is not fully realistic for

the ocean, the following numerical examples demonstrate the quantitative importance

of the fundamental mechanisms discussed above, specifically the horizontal modal

refraction and mode coupling that govern acoustic propagation through real ocean

waveguides. In the following two chapters, we will discuss three-dimensional acoustic
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propagation through more realistic environments that account for the geometrical

and statistical properties specific to each type of wave.

Numerical methods for three-dimensional acoustics coupled mode propagation in

range dependent environments are complicated and generally require a considerable

amount of computing power and memory. Three-dimensional PE techniques [51, 52]

are perhaps the most efficient ways to accomplish the task of creating a pressure field

numerically. In the parallel waves application, we can eliminate the range dependence

in the dimension along the wave crests. For such cases, there exists a useful Fourier

transform based method [53, 54] that allows one to divide a three-dimensional mode

coupling problem into many standard [55] two-dimensional problems (see Appendix

B for details). This technique is favorable to us for mode calculations, since it gives

the exact solution and allows all grazing angles as well as backscattering to be taken

into account, unlike available PE algorithms.

The previous background waveguide model will be used for our simulations (c0 =

1500 m/s, c0 = 1500 m/s, cml = 1530 m/s, cb = 1800 m/s, ρ0 = 1000 kg/m3,

ρbot = 2000 kg/m3, Hbot = 80 m and D = 15 m in Fig. 4-1). As before, we model

the waves by displacing one of the three interfaces, and then use the KRAKEN [32]

normal mode code for computing modal functions and horizontal wavenumbers across

the direction of the wave crests. In our analysis, the main accent will be made on the

internal waves, since they were noticed to cause stronger mode coupling then other

waves do. However, the main parallels and differences with the bottom sediment

waves and surface waves will also be outlined. A hyperbolic secant squared wave

shape is used for modeling the internal waves of depression,

Hiw (y) = D +∆Hiw (y) sech2
(

y − ywave

W

)

, (5.33)

where ∆Hiw = 25 m is the amplitude of the wave used in the simulations, W = 70m

is the width parameter, and ywave is the coordinate of the wave center. This wave

shape is as a formal solution of the Korteweg-de-Vries equation [56] describing the

propagation of nonlinear internal waves. The half amplitude width of this wave is
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130 meters. Upper panel in Fig. 5-18 shows the shape of this wave (black line).

In our numerical modeling, hundred steps are used to divide the waveguide inside

the wave into locally range independent sectors (blue line in the upper panel of Fig.

5-18). We limit ourselves here to a frequency of 100 Hz, since we did not see any

physical differences in the results for higher frequencies. Changes in the horizontal

wavenumber across the wave with respect to background water column values, as well

as the horizontal critical angles of the normal modes, are shown in the middle and

bottom panels of Fig. 5-18 respectively.

A. Single wave

We start our modeling with a single internal wave centered along ywave = 0 m

and acoustic source at xs = 0 m, ys = 500 m. For visualizing the effects of mode

coupling, we let the incident field consist of a single mode with unit amplitude at one

meter distance from the source, as we did in our theoretical studies in Section 5.3.3.

Figure 5-19 shows modal amplitudes for the case of incident mode one. Location of

the internal wave crest is schematically shown by the white dashed line. One can

clearly see the likeness of the numerical solution for the smooth wave shape to the

theoretical solution for the infinitely wide SIA wave in Fig. 5-11. The HLM pattern

of mode is almost identical between the two, with only a slight difference in the

locations of the modal amplitude maxima and minima. We also note the similarity in

the reflected beams of coupled modes two and three. However, the modal amplitudes

of these beams are weaker compared to the SIA case. This internal soliton with

smooth wave shape results in a 17 dB difference between coupled mode reflection and

the reflection of the incident wave (the sharp interface of the same amplitude (Fig.

5-11) provided 5 dB stronger reflection of the coupled mode one). As we see from

the plots, the simple sharp approximation used in previous sections is a very efficient

way of studying the physics of mode coupled refraction on parallel waves. The main

difference noted between the solutions is in the transmitted field, which is mainly due

to the finite width of the sech2 wave compared to the infinitely wide SIA wave in

Fig. 5-11. The finite width of the wave results in larger shadow zones and moves

the maxima of the transmitted modal amplitudes off the y-axis to some grazing angle
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Figure 5-18: Upper panel: internal wave of depression with amplitude of 25 m and
hyperbolic secant squared shape (black line). Half amplitude wave width is 130 m.
The blue line represents hundred steps dividing the wave into locally range inde-
pendent sectors used in numerical modeling. Middle panel: changes in the horizontal
modal wavenumbers across the soliton internal wave with respect to background water
column values. Bottom panel: Normal mode horizontal critical angles.
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that is mode number dependent. In addition, the amplitude of mode three shows a

characteristic minimum at a transmitted grazing angle of 10-12 deg. This is direct

evidence of the transparent resonance studied in Section 5.4. A situation similar to

the Fig. 5-19 scenario, but for incident mode three, is shown in Fig. 5-20. The panels

for modes two and four illustrate distinct nulls in the coupled transmission resulting

from the transparent resonance. Almost 10 dB of modal amplitude fluctuation due to

the resonance is noticed for mode two, which is considerable. This is consistent with

very strong resonance type intensity fluctuations observed in both the Yellow sea [3]

and the SWARM95 [6] experiments.

Similar numerical simulations were performed for bottom sediment waves and

surface waves, both with amplitude of two meters. The only major physical difference

noted was in the strength of mode coupling. Internal waves often (but not always)

cause a strong mode coupling between neighboring lower order modes (modes 1-

3 in the example above), and weaker coupling of higher order neighboring modes.

Contrariwise, mode coupling due to bottom or surface waves is almost not noticeable

for the lower order modes and is stronger for higher order modes.

As an example, we consider a bottom sediment wave with a two meter amplitude

and exactly the same wave shape as in previous example with internal wave (hyper-

bolic secant squared with half amplitude width of 130 meters). This particular wave

shape was chosen for comparison with internal waves only (note that the shapes of

the bottom sediment waves vary widely and are often not symmetric [57]). Plots in

Fig. 5-21 illustrate the shape of this bottom wave (upper panel), perturbations to

the modal horizontal wavenumbers (middle panel) and associated horizontal critical

angles (bottom panel) respectively. The maximum critical angle for this bottom wave

is eight degrees, which is nearly equal to the maximum critical angle for the internal

wave example above. Figure 5-22 shows corresponding modal amplitudes for incident

mode five, which is last but one propagating mode in this waveguide. Although the

mode coupling due to bottom waves is stronger between higher order modes, we note

the weak coupling of the incident mode with its neighbor modes four and six com-

pared to the much stronger coupling of the lower order modes for the internal wave
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Figure 5-19: Amplitudes of modes 1-4 for the case of incident mode one with unit
amplitude at one meter distance from the source and single internal wave of twenty
five meter amplitude centered at ywave = 0 m. Source is located at ys = 500 m (red
circle).
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Figure 5-20: Same as in Fig. 5-19, but for incident mode three.
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case in previous example. It was concluded from our simulations that with compara-

ble widths of the waves and associated horizontal critical angles, internal waves cause

stronger mode coupling than bottom or surface waves. We note however that bottom

and surface waves can have much shorter wavelength than internal waves and in such

cases mode coupling may be strong. In addition to the weaker mode coupling due

to bottom and surface waves, surface waves were also shown to cause modal energy

leakage into the continuous spectrum rather than mode coupling. This special case

will be discussed in Chapter 7.

A. Multiple waves

In the following example we place two identical internal waves (with the same

amplitude and width as in the examples above) centered at ys = ±300 m. Figure

5-23 illustrates the case of horizontal ducting with an acoustic source in between

the waves (ys = 0 m) and incident mode one of unit amplitude at one meter distance

from the source. The upper panel indicates a significant (12-15 dB of modal amplitude

difference) amount of energy trapped between the waves. This energy travels over a

long distance depending on the length [18, 19] and curvature [17] of the duct, since

there is (almost) no cylindrical spreading associated with its propagation. Along

with ducting of incident mode one, one can also note ducting of a coupled mode two,

which is 15-20 dB weaker than the ducting of the initial mode one. This effect is

considered weak, and likely will not be noticed or measured if all modes are excited.

Of importance is the effect of tunneling seen in the upper panel. At subcritical angles,

mode one energy leaks out of the duct, becoming available for the neighbor duct. As

the distance from the source increases, the tunneled energy rate decreases, but we

note considerable 7 dB difference between the tunneled and ducted modal amplitudes

15 km away from the source. The grazing angle of the tunneled mode is localized

near its critical angle, and this is the only difference between the tunneling of the

other modes.

We next relocate the source to ys = 500 m and shift wave centers to ywave1 = 0

m and ywave2 = −600 m such that source is outside of both waves and repeat the

simulation. The resultant modal amplitudes for mode one incident are shown in
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Figure 5-21: Upper panel: a bottom sediment wave of two meter amplitude with
hyperbolic secant squared shape (black line). Half height width is 130 m. The blue
line represents hundred steps dividing the wave into locally range independent sectors
to be used in numerical modeling. Middle panel: changes in the horizontal modal
wavenumbers across the bottom sediment wave with respect to background water
column values. Bottom panel: normal mode horizontal critical angles.
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Figure 5-22: Amplitudes of modes 3-6 for incident mode five with unit amplitude at
one meter distance from the source and a single bottom sediment wave of two meter
amplitude centered at ywave = 0 m. Source is located at ys = 500 m (red circle).
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Figure 5-23: Horizontal ducting of normal mode. Acoustic source located at ys = 0 m
is in between two internal waves centered at ywave = ±300 m. Incident field consists
of a single mode one with unit amplitude at one meter distance from the source.
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Fig. 5-24. From the upper three panels, the effects of secondary ducting are clearly

seen: tunneled ducting of incident mode one, and coupled ducting of modes two and

three. Obviously, the tunneled ducting is more energetic in this case: the amplitude of

tunneled mode one is nearly 10 dB larger than the amplitude of the coupled mode two

in the secondary duct. A similar example, but for mode two incident, is plotted in Fig.

5-25. We see that in this case, the tunneled field of the incident mode two has a steeper

angle and thus more reflections within the duct over the same distance (note that

mode two has the greatest critical angle of 8.3 degrees). We remember that tunneled

secondary ducts are associated with continuous leakage of modal energy out of the

duct during each interaction with wave. Figures 5-24 and 5-25 clearly illustrate this

phenomenon. Similar to the previous example, coupled secondary ducting is weak.

It has been concluded from multiple numerical simulations, that mode tunneling

has similar strength for all mode numbers, whereas coupled secondary ducting was

noticed only for low order modes and only for internal waves. The two examples

considered illustrate the strongest coupled ducting noticed. Hence, coupled ducting

is not considered to be an important effect.

Amplitudes of the modes transmitted through both waves show distinct trans-

parent resonances that are closer spaced in grazing angle and have bigger amplitude

fluctuations than for the case of one wave (Figs. 5-19 and 5-20). We noticed in our

simulations, that the scintillation of the modal amplitudes transmitted through the

wave train initially increases with the number of waves in the train due to cumulative

transparent resonances. However, after a certain number of waves in the train (five to

six in our case) having slightly different amplitudes and widths, variability in the nulls

and maxima in the multiple resonances results in ”smearing” of the acoustic ampli-

tude fluctuations. Fredericks et. al. [7] showed that for a fixed source and receiver in

the SWARM95 experiment, situated across the mean direction of the internal wave

crests, the root mean square of the log-intensity over a several hour time window

was near 5.6 dB, the statistical value expected for fully saturated ocean waveguides

[58, 59].

116



Mode 1
Y

, k
m

 

0 5 10 15 20 25 30
−2

−1

0

1

2

Mode 2

Y
, k

m
 

0 5 10 15 20 25 30
−2

−1

0

1

2

Mode 3

Y
, k

m
 

0 5 10 15 20 25 30
−2

−1

0

1

2

Mode 4

X, km 

Y
, k

m
 

0 5 10 15 20 25 30
−2

−1

0

1

2

 

 

dB

−60

−50

−40

−30

−20

Figure 5-24: Secondary ducting. An acoustic source at (xs, ys) = (0, 500) m is located
just outside of the duct composed of two internal waves centered at ywave1 = 0 m and
ywave2 = −600 m. The incident field consists of a single mode one of unit amplitude
at one meter distance from the source.
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Figure 5-25: Same as in Fig. 5-24, but for incident mode two.
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Chapter 6

Crossing Internal Waves

One of the important features common for internal waves in shallow waters is the

crossings of separate internal wave trains. Crossing structures are seen on almost all

of the satellite synthetic aperture radar (SAR) images when internal waves are present

[20]. As an example, Fig. 6-1 shows one of the SW06 site SAR images with multiple

crossings of the curved internal wave trains (taken on July 23, 2006). Analysis of

multiple SAR images, including this example suggests that the angle of the waves

cross varies widely from 0 to 90 degrees. Although curvature of the internal wave

fronts is commonly observed together with the wave crossings, in this chapter we

will study the effects of three-dimensional acoustic propagation through the medium

that contains crossing of straight wave trains (acoustical effects caused by the wave

curvature are studied in [41, 17]). In particular, we are interested in the interaction

of the acoustic energy ducted in between waves from one train with crossing wave

train. To do this, we briefly explain the governing physics of crossing ducts below

and associate it with the studied effects for the parallel waves case. In Section 6.2,

we will present the results of three-dimensional acoustic PE modeling for the straight

internal waves crossings at various angles.
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Figure 6-1: SAR image of the internal waves in the SW06 experimental area showing
multiple crossings of the curved wave trains. Taken on July 23, 2006.
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6.1 Physics of Crossing Acoustic Ducts

The physics of crossing internal soliton waves is a complicated nonlinear oceano-

graphic problem. When one soliton is traveling across another, strong interaction

occurs, and this problem remains under active research presently. In application to

low frequency acoustics, we make a rough assumption of the internal wave amplitude

inside the crossings to be the maximum of two of undisturbed solitons. Taking into

account a relatively small area inside interacting solitons compared to the width of

acoustic ducts, we believe that for studying the first order acoustic effects in presence

of such structures, our assumption is reasonable.

Consider the acoustic energy of mode n horizontally trapped between two straight

SIA internal waves. The grazing angles of the horizontal rays are confined within

the range [−χcrit,n..+ χcrit,n], where χcrit,n is the critical horizontal angle of mode n

associated with these waves, as before. Now let another pair of internal SIA waves to

cross the first one at angle γcross. We can divide the physics of acoustic interaction

with the crossing waves into two ranges of γcross: steep and shallow (Fig. 6-2).

At steep angles of crossing (typically above 2χcrit,n if the two pairs of waves are

identical), the angle between the horizontal ray of mode n and the crossing wave is

steep, and mode coupling is therefore considerable. This scenario is schematically

shown in the upper panel of Fig. 6-2 with red rays indicating mode coupling. There

are usually more than two waves in the crossing train. Also, multiple SAR images

[20] seen to indicate that crossings of the internal wave trains often happen near wave

terminations. Therefore, energy of mode n will be highly scattered by the crossing of

these high angle waves (similar to the steep incidence upon the parallel waves in the

previous chapter) and no longer ducted for steep angles of wave crossing.

At shallow crossing angles (less than 2χcrit,n), there exist several mechanisms that

pull modal energy out of the duct by either reflection or cross-ducting. In the case

of reflection, some of the modal rays hit the interface of the leading crossing wave

at a subcritical angle and this part of the modal energy is (almost) totally reflected

by this wave (red solid ray in the bottom panel of Fig. 6-2). After being reflected,
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(a) Steep crossing angle

Source

(b) Shallow crossing angle

Figure 6-2: Schematic view of ducted acoustic energy interaction with crossing waves.
At steep angles of wave crossing (upper panel), mode coupling is considerable, and
ducted energy is scattered by interactions with multiple waves. At shallow angles of
wave crossing (bottom panel), part of the modal energy is pulled out of the duct by
reflecting from the first crossing wave (red solid ray), and another part tunnels (red
dashed ray) or propagates (blue ray) through the first crossing wave and becomes
ducted between the first and the second crossing waves (cross-ducting).
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its grazing angle with respect to the waves of the initial duct is no longer subcritical

and this part of the energy leaves the duct. As seen in the previous chapter, modal

reflection at subcritical angles is not perfect: horizontal tunneling can provide the

leakage through the wave. When the energy tunneled through the first crossing

wave reflects from the second crossing wave, it leaves the initial duct and becomes

ducted by the crossing waves, or cross-ducted (red dashed line in the same plot).

Mode coupled cross-ducting is also possible (in direct analogy to the mode coupled

secondary ducting), but numerical simulations below show it to be a negligible effect.

Also cross-ducted are the modal rays that propagate through the first crossing wave

at steeper than critical grazing angle and then are consequently reflected by the wave

from the original duct and the second crossing wave (blue ray on in the plot).

Both reflection from the leading crossing wave and cross-ducting will be shown

below to be important at crossing angles less than 2χcrit,n. The relative strength of

these effects is shown to be dependent on the actual value of the crossing angle.

6.2 Numerical Modeling

In this section, we take advantage of a Cartesian three-dimensional PE acoustical

propagation program [60] for handling ocean environments with crossing internal

waves. This program solves one-way wave propagation PE for a point source radiating

single frequency continuous wave (CW) signal and is based on a split-step Fourier

technique [61]. A wide angle Thompson and Chapman propagation operator [62] is

used for studying a wide range of internal wave cross angles. A very good agreement

of the results obtained with this program and the exact mode coupled solution for

one of the parallel waves examples considered in previous chapter is demonstrated in

Appendix C.

As a background water column, we use our two-layer model with previous param-

eters (c0 = 1500 m/s, c0 = 1500 m/s, cml = 1530 m/s, cb = 1800 m/s, ρ0 = 1000

kg/m3, ρbot = 2000 kg/m3, Hbot = 80 m and D = 15 m in Fig. 4-1). Vertical

smoothing of the sound speed and density is applied as necessary for the program
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use. Internal waves from the first wave pair have an amplitude of twenty five me-

ters and are placed parallel to the x-axis along ywave = ± 300 m, as in the previous

chapter. For modeling the initially ducted modal energy, we place acoustic source

in between the first pair of internal waves at (xs, ys) = (0, 0) m. The depth of the

source is not specified here, since we use a single mode starter in our program in

order to evaluate the effects of mode coupling at the wave crossings. The top panel

of Fig. 6-3 shows the smoothed sound speed water column cross section along x = 0

m and the smoothed density column used by the program. The second group of

waves consists of a single or a pair of identical waves with the same parameters as

the first pair and it crosses the first group at xcross = 100 km, ycross = 0 m. The large

distance from the acoustic source to the wave crossing is only chosen to clearly show

the effects of wave crossings on the ducted energy. There is no physical attenuation

included in the model, and therefore the energy level within the duct is not affected

by this distance. In our modeling, we use an acoustic frequency of 100 Hz and an

initial field composed entirely of mode one (as before, with unit amplitude at one

meter distance from the source), which showed the strongest coupling comparing to

all other modes in this waveguide. Output modal amplitudes are obtained by mode

filtering the three-dimensional output pressure field. We note that the first order

approximation of the wide angle PE normal modes [63], which are slightly different

from the standard (Helmholtz) normal modes, was used for cleaner mode filtering.

Figure 6-4 presents the results for a wave crossing angle of 40 degrees, which is

considered a steep angle. In the top panel, the depth integrated acoustic intensity level

is shown referenced to unity (0 dB) at one meter from the source location. The white

dashed lines in all plots denote the centers (crests) of the internal waves. The second

plot from the top shows the same depth integrated intensity for an enlarged area of the

wave crossings. The lower two plots present the amplitudes of modes one and two (as

a reminder, we use a single mode one starting field with unit amplitude at one meter

distance from the source in our PE calculations). As one can see, the forty degree

crossing angle does not cause any noticeable effects of horizontal refraction. Instead,

strong energy coupling to mode two is observed behind the crossing waves. The
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Figure 6-3: Left plot: smoothed sound speed cross-section along x = 0 m. Red circle
shows the source location (note that the depth of the source is not specified, since
a single mode starting field is used in the program). Right plot: smoothed density
column.

strength of this coupling was shown to fluctuate with changing steep crossing angles.

Similar to the transparent resonance studied in the previous chapter, the change in

the cross angle implies a change in the effective width of the crossing waves that

results in the coupled mode intensity fluctuations. We have already mentioned that

in real ocean waveguides, internal wave ducts are often seen to terminate after crossing

several waves from different trains. Therefore, mode coupled energy remaining in the

duct, as shown in Fig. 6-4, is likely to be scattered by further mode coupling and

then radiated out at the duct termination. Our numerical modeling of wave crossings

at different angles showed no significant changes in physical processes (except for the

coupled mode amplitude fluctuations behind the waves) for crossing angles steeper

than fifteen degrees.

The case similar to Fig. 6-4, but for waves crossing at an angle of eleven degrees,

is shown in Fig. 6-5. At this angle, in addition to a coupled mode energy behind

the crossing waves, one can notice that a small amount of mode one energy (and a

very small amount of mode two energy) is cross-ducted or escapes from both ducts.

The escaped energy behind both ducts is likely to be cross-ducted as well if there are

more than two waves in a crossing train. Note that the critical angle of mode one

in this example is 5.3 degrees, and the crossing angles at which these effects start

125



being noticed are 12-13 degrees, which is approximately twice the critical angle of

the incident mode, as predicted. At smaller crossing angles (seven degrees in Fig.

6-6) cross-ducting becomes stronger and we also see significant reflected energy from

mode one escaping from the duct. At a crossing angle of seven degrees, the modal

intensities of the cross-ducted and reflected acoustic signals are approximately 8 dB

less than the intensity of the signal remaining in the duct. As the angle of crossing

becomes even more shallower, cross-ducting and reflection pull a considerable amount

of energy out of the initial duct and are as important in magnitude. Figures 6-7 and

6-8 show that after crossing two internal waves at four and two degrees, the depth

integrated intensity remaining in the initial duct is 6 dB weaker than before the

crossing, which is considered a significant loss. For comparison, Figs. 6-9 and 6-10

illustrate results similar to Figs. 6-7 and 6-8, but for a single crossing wave (note a

single white dashed line indicating the crossing wave crest). Comparing the figures,

one sees that although single crossing wave results in a similar modal reflection, it

does not provide the effect of cross-ducting, thus pulling out considerably less energy

from the initial duct. We also note from Figs. 6-5 - 6-10 that both cross-ducted and

reflected energy escaping from the initial duct are nearly adiabatic effects. Similar

results were obtained for other incident modes, with the main difference being in the

values of the critical angles that determine the cross angle range of observed effects.

We surmise from our numerical modeling that internal wave crossings are respon-

sible for the horizontal refraction and directional spread of modal energy at crossing

angles below twice the horizontal critical angles of the normal modes. Together with

the known acoustic effects of internal wave curvature [17], shallow water internal

waves thus cause uncertainties in the measured angle of signal arrival, which can be

more than the 4 degrees observed in the SW06 experiment. In the next chapter,

we consider experimental issues and possible methods for measuring the effects of

acoustic interaction with crossing internal wave structures.
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Figure 6-4: Crossing of two identical pairs of internal waves at forty degrees. White
dashed lines indicate the wave crests. Depth integrated intensity (re 0 dB at 1 m
from the source) is shown in the top panel, with an enlarged crossing region in the
second panel from the top. Intensities of modes one (initial) and two are shown in
the lower two panels.
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Figure 6-5: Same as in Fig. 6-4, but for a wave crossing angle of eleven degrees.
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Figure 6-6: Same as in Fig. 6-4, but for a wave crossing angle of seven degrees.
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Figure 6-7: Same as in Fig. 6-4, but for a wave crossing angle of four degrees.
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Figure 6-8: Same as in Fig. 6-4, but for a wave crossing angle of two degrees.
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Figure 6-9: Crossing of the parallel internal waves with a single internal wave at four
degrees. White dashed lines indicate the wave crests. Depth integrated intensity (re
0 dB at 1 m from the source) is shown in the top panel with enlarged crossing region
in the second panel from the top. Intensities of modes one (initial) and two are shown
in the lower two panels.
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Figure 6-10: Same as in Fig. 6-9, but for a wave crossing angle of two degrees.
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Chapter 7

Applications to a More Realistic

Ocean

In previous chapters we theoretically studied and numerically modeled low frequency

acoustic propagation through waveguides that have either straight, parallel waves

with infinite crest lengths or crossing structures of parallel waves. We saw that the

physics governing the acoustic interaction with all three ocean wave types is sim-

ilar, with the main difference being in the critical angle distributions across mode

number and in mode coupling strengths. In the real ocean, the waves are often not

straight. In addition, the amplitudes, shapes, wave crest lengths, and the scale of

temporal variability are different for the three wave types. In the following section,

we will discuss the existing oceanographic and acoustic data sets and our ideas on

possible future experiments that will capture the new effects studied in this thesis in

presence of real ocean internal waves. Fully three-dimensional sound interaction with

the transverse bedforms (megaripples and sand waves) or with long period surface

swells is a new field for acousticians. In this chapter, we will present our (primarily)

computational look into a three-dimensional sound wave propagation through waveg-

uides with realistic sea surfaces (Section 7.2) and bottom wave fields (Section 7.3).

We will see that both of these oceanographic features can result in a considerable

azimuthal dependence of the acoustic intensity fluctuations. Directions for the future

theoretical and numerical studies and our considerations on possible experiments will
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also be outlined.

7.1 Internal Waves

Internal waves are common in almost every part of the world ocean. Similar to acous-

tic waves, the internal wave field can be decomposed into normal modes (and usually,

the first one or two modes carry most of the energy) that propagate in the horizontal

plane with an associated group speed [64]. Mesoscale variability of the water column

properties (eddies, meandering fronts, etc) cause horizontal variability in the buoy-

ancy frequency (Brunt-Vaisala) column that results in the horizontal refraction of the

internal wave modes and curvature of its fronts. Bathymetry variability also changes

the internal wave modes and eigenvalues. Figure 6-1 shows a SAR image of the non-

linear internal wave activity at the SW06 site taken on July 23, 2006. In this figure,

several internal wave trains with noticeable curvature cross each other and compose a

complicated pattern. For comparison, a picture in Fig. 7-1 taken on August 8, 2006

shows internal waves with relatively straight line fronts and with only few crossings.

As we see, both scenarios can be found in the shallow water.

The statistics of the parameters of crossing internal waves, such as the angle of the

crossings, the curvature radius of crossing waves, the distance from the shore of the

most frequent crossings, etc. can be studied from analyzing a collection of SAR images

and oceanographic data recorded over a long time period. We expect these statistics

to be strongly dependent on the geographic location. One of the reasons for this is

that the bottom topography that is known to play role in internal wave scattering and

generation. Let us consider the interaction of the barotropic tide with the shelfbreak,

as schematically shown in Fig. 7-2. If the slope of the continental slope is relatively

uniform in the along shelfbreak direction, then the front of the generated internal

waves will be essentially plane wave. This would correspond to the relatively straight

internal wave scenario (left panel in Fig. 7-2). On the other hand, the shelfbreak and

continental shelf regions that have distinct bottom inhomogeneities such as canyons

or shoals can act as strong point sources of the internal waves when interacting with
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Figure 7-1: SAR image of internal wave activity 20 km shoreward of the SW06 site
taken on August 8, 2006.
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Figure 7-2: Left panel: homogeneous shelfbreak and continental shelf do not affect
curvature of the internal wave’s fronts. Right panel: interaction of barotropic tides
with bottom canyons or shoals results in point sources of internal waves.

the tides (right panel in Fig. 7-2). If one assumes first order cylindrical spreading

of the internal wave energy away from these sources, the space statistics of crossing

angles and curvatures of the crossing internal waves can be predicted from simple

geometric computations. We note however, that the temporal variability of these

processes is on the order of several hours and needs to be taken into account if one

wants to attempt to observe a specific crossing region.

SW06 was noteworthy for our work in that it contained fully three-dimensional

oceanographic and acoustic measurements over two months in an area with intensive

internal wave activity. The oceanographic data gathered has high enough spatial and

temporal resolution for detailed studies of both the meso- and finer scale oceanography

(internal tides and waves). From an acoustic point of view, the fixed source and

receiver arrays focused the measurements of sound transmissions to two perpendicular

paths: across the internal waves and along the waves. On the along waves acoustic

path, strong acoustic horizontal ducting was observed in both the SWARM95 [8] and

the SW06 experiments [14]. This geometry also allowed the experimenters to gather

the first experimental evidence of the HLM pattern, a new three-dimensional acoustic

effect (see Chapter 5) that had not been observed before (Badiey et. al. [15]).

Unfortunately, the SW06 data is not sufficient for experimentally studying the
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effects of secondary ducting or crossing waves, for several reasons. For registering

secondary ducting effects, one should locate a source in a primary duct and a receiver

array in neighboring ducts that are both relatively straight with no terminations and

also have a fixed path of 15-20 km long. Such ducts were not commonly seen, nor

was the experiment in this geometry. For crossing waves, if one wants to detect the

effects of cross-ducting or the reflected energy escaping from the primary duct, the

constraints on the source and receiver location are even more strict. Finally, the

schedule of the transmissions in the SW06 experiment was often mismatched with

the internal wave activity, making the chance of capturing the right internal wave

event together with the proper acoustic transmission small (this was due to marine

mammal permitting restrictions, and beyond the experimenters control).

To increase the chances of capturing secondary ducting or crossing waves, several

issues need to be considered. First, an experimental area with appropriate bathymetry

should be selected according to the discussions above (uniform shelbreak and conti-

nental shelf for the secondary ducting and bottom topography with known roughness

such as canyons for crossing waves). Second, one could deploy more acoustic receivers

several hundred meters apart, as schematically shown in Fig. 7-3, in order to add

more along wave acoustic paths with closely spaced directions. This setup will in-

crease chances of capturing the effects of secondary ducting or crossing waves. As

an alternative, one could use a fixed receiver array and one or several mobile acous-

tic sources. This could be a source either towed behind a ship or mounted on an

underwater vehicle. In this case, one is able to control the source position and the

optimal time of transmission with respect to the moving internal waves. For this

case, the internal wave appearance times and the shapes of the wave crests has to

be continuously tracked in real time (integrated data from ship based radars with

frequently updated SAR images would be a good start). Underwater vehicles with

mounted acoustic sources have already been used as a part of the SW06 experiment

for studying the anisotropic properties of acoustic transmissions, so this technology

exists.
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Figure 7-3: Experimental setup with an acoustic source and several closely spaced
receivers for increasing the number of closely spaced along wave acoustic paths.

7.2 Surface Waves

Ocean surface waves are well known as random scatterers of sound in deep and shal-

low water ocean waveguides [1]. However, low frequency surface waves (swell) are

observed to have a small a decay rate and narrow directional spread [28, 29, 65] at

large distances from their origins (storms or hurricanes). Based on our computations

for idealized straight waves, we believe long traveling swell can have a noticeable im-

pact on the directional properties of low frequency acoustic field, which have not been

studied before. Below we provide a brief description of the directional spectrum of sur-

face waves and our primary computational look into the problem of three-dimensional

acoustic propagation through shallow water waveguides that have realistic surface dis-

placements caused by the passing of long period surface swells. We will also present

our thoughts on a possible future experiment that will allow one to quantify the

proposed directional features of sound scattering in real ocean environments.

7.2.1 Directional Spectrum

Ocean surface waves are most often considered as a random process whose statistical

properties depend on the sea state [66]. In the fully developed seas, the frequency

directional spectrum of the surface waves can be represented as

S (f, φ) = S (f)G (φ|f) , (7.1)
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where the frequency spectrum S (f) is described by the Bretschneider empirical for-

mula [66]

S (f) = 0.257H2
1/3T

−4
1/3f

−5 exp
[

−1.03
(

T1/3f
)−4

]

, (7.2)

with frequency f given in Hertz, significant waveheight H1/3 given in meters and

significant period T1/3 given in seconds. There exist a number of similar forms de-

scribing the directional function G (φ|f), and the one we will use here was proposed

by Mitsuyasu et. al. [67] based on experimental observations. It is

G (φ|f) = G0 cos
2s

(

φ− φ0

2

)

, (7.3)

where

s =











(f/fp)
5smax, f ≤ fp,

(f/fp)
−2.5smax, f ≥ fp,

(7.4)

fp = 1/
(

1.05T1/3

)

is the frequency of the spectral peak, smax is the parameter defining

the directional spread and the constant G0 is

G0 =
1

π
22s−1 Γ

2 (s+ 1)

Γ (2s+ 1)
, (7.5)

where Γ (·) denotes the Gamma function. Computational analysis by Goda et. al.

[68], that also agrees with the directional spread observations for the swell traveling

across the Indian ocean by Ewans [65], suggests that smax = 75 is a reasonable value

for the spread of swell waves with a long decay distance. As an example, Fig. 7-4

shows the directional spectrum of the swells with the following parameters: H1/3 = 2

m, T1/3 = 17 s, smax = 75, φ0 = 0 deg. These parameters are close to observed

values for the long traveled swell [29]). Figure 7-5 illustrates one realization of the

sea surface elevation, together with an enlarged view, based on this spectrum.
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7.2.2 Numerical Modeling

The ocean swell field has the most noticeable temporal variability as compared to

the other two types of waves. Its characteristic phase speeds vary from a few to tens

of m/s. For acoustic frequencies considered in the present work (less than 500 Hz),

this will result in a few Hz of the Doppler shift. Such correction is not considered

important for the governing physics of the three-dimensional acoustic effects studied

above. Therefore, in our acoustic computations we will use the frozen waveguide

approximation, i.e. the waveguide properties are assumed to be stationary over the

time of acoustic propagation. As a background waveguide, we use the two layer and

half space waveguide model described in Chapter 4 with the same parameters (c0 =

1500 m/s, cml = 1530 m/s, cbot = 1800 m/s, ρ0 = 1000 kg/m3, ρbot = 2000 kg/m3, Hbot

= 80 m, D = 15 m). Swell is incorporated into this model as the sea surface elevation

shown in Fig. 7-5. Unfortunately, currently available three-dimensional parabolic

equation programs are not capable of handling the given sea surface elevation and

we were not thus able to provide a fully three-dimensional coupled mode solution.

Instead, we compute the phase speed of each normal mode with the KRAKEN [32]

normal mode program mode across the domain and use the RAM parabolic equation

program [69] to simulate horizontal adiabatic propagation separately for each mode.

Possible effects of mode coupling will be discussed later in this section.

By placing the acoustic source at (xs, ys) = (0, 0) m and assuming the amplitude of

each mode to be 0 dB at one meter away from the source, four horizontal propagation

simulations, one for each of the directions of x− and y−axes, were performed for each

normal mode. Total solution for each normal mode was then combined by stitching

four separate quadrant solutions along the forty five degree bearings x = y and

x = −y.

Figure 7-6 shows resultant amplitudes of modes 1, 3, 5 and 7 for the source

frequency of 100 Hz. One can see from this figure that, in the absence of mode

coupling, mode 1 propagation has very small or no azimuthal dependence. On the

other hand, plots for mode 3, 5 and 7 show scintillations of their amplitudes within a
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Figure 7-4: (a) Directional spectrum for surface swell with H1/3 = 2 m, T1/3 = 17
s, smax = 75 and φ0 = 0 deg. (b) Directional spectrum shown in (a) plotted for the
dominant azimuth φ0.

certain azimuthal range centered at the dominant direction of the ocean wave crests

(x = 0). The amplitude of these scintillations, as well as their azimuthal range,

increases with mode number (note the very strong scintillation of more than 20 dB

for azimuthal range of 90 deg of mode 7 amplitude). This mode number dependence is

consistent with the horizontal critical angle analysis studied in Chapter 5: mode one

has very small critical angle because of its insensitivity to the sea surface disturbance,

whereas higher order modes span the whole water column and are therefore affected

by the local horizontal ducts in between surface swell troughs.

Another interesting feature that can be seen from the plots in Fig. 7-6 is the range

dependence of the amplitude scintillations. Narrow beams of increased modal energy

are noticed to be more distinct at the shorter distances from the source (modes 5

and 7 are explicit examples). These beams are likely to result from the normal mode

interaction with the closest local surface wave ducts to the source. At longer ranges

(more than approximately 5 km), further interaction of the normal modes with the

surface waves diffuses its energy into other short local ducts, smearing the initial

azimuthal pattern. This is an interesting phenomenon suggesting existence of the

certain distance from the source at which scintillations of modal amplitudes will be

the most noticeable. This is consistent with the analysis of the range dependent
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Figure 7-5: (a) Realization of the sea surface elevation based on directional spectrum
shown in Fig. 7-4. (b) Enlarged view of (a) shown for the region inside the dashed
line.
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Figure 7-6: Amplitudes of modes 1, 3, 5 and 7 for adiabatic propagation from the
source, which is located at (xs, ys) = (0, 0) m, and has frequency 100 Hz.
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intensity scintillation caused by internal wave scattering [70].

7.2.3 Mode coupling

We have seen from our numerical modeling that adiabatic normal mode propagation

suggests significant amplitude scintillations in the wide range of azimuths (up to

90 deg) for higher order modes. Here we address the next obvious question: ”Is the

adiabatic approximation valid for these applications to surface swells”? To answer this

question, one should evaluate the strength of mode coupling effects in the across wave

crest directions, which correspond to the most rapid changes in modal properties. We

return to the sharp interface approximation (SIA) of surface waves used in Chapter 5

to explore the feature of mode coupling in these applications. Consider an example of

the plane wave normal mode boundary problem (similar to Section 5.3.1) at a sharp

interface dividing the unperturbed background waveguide and its perturbation due to

a surface depression (Fig. 7-7a). Here we limit our discussion to the normal incidence

of initial mode n. As an example, Fig. 7-7b represents the normal mode solution due

to incident mode 5 with unit amplitude at frequency 100 Hz with surface depression of

2 m. The black line shows the vertical structure of the solution for the total pressure

field along the interface on the unperturbed side of the interface, and the blue line

shows the corresponding solution for the perturbed side. The red line represents the

difference between the solutions on both sides. As we see, neglecting the continuous

spectrum results in a slight mismatch between solutions on both sides of the sharp

interface. In addition, the difference between solutions resembles the shape of mode 8,

which is not a propagating mode in either the perturbed or unperturbed waveguides.

This implies a leakage of modal energy into the continuous spectrum, or equivalently,

into the seabed. Mode coupling within discrete spectrum for this waveguide is shown

in Fig. 7-8 by the coupled mode reflection and transmission coefficients (defined in

Section 5.3.1) at normal incidence upon the sharp interface. Similarly to internal

waves and bottom waves, the coupled reflection is reasonably small for all incident

modes. The transmission coefficient shows the strongest coupling between higher

order neighbor modes. We note, however, that the strength of the mode coupling
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Figure 7-7: (a) Vertical sharp interface dividing unperturbed waveguide and its per-
turbation due to surface depression of amplitude 2 m. (b) Pressure field solution at
the unperturbed side of sharp interface (black) and at the unperturbed side (blue).
Red line represents the difference in solutions on both sides.
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Figure 7-8: Plane wave mode coupled reflection (left plot) and transmission (right
plot) coefficients for the normal incidence upon the sharp interface between unper-
turbed waveguide and its perturbation due to surface depression of amplitude 2 m
and frequency 100 Hz.

into the continuous spectrum is larger than into propagating modes, and therefore

the overall loss of modal energy dominates the coupling between propagating modes.

Note that 90 deg is the worst case and that at shallower angles, coupling strength is

much less.

7.2.4 Practical Considerations

It was shown above that low frequency acoustic propagation in the presence of long

traveling surface swells can result in considerable fluctuations of the higher order

mode amplitudes within a broad (up to 90 deg) azimuthal range centered at the

dominant direction of wave crests. We also noted that the energy leakage of higher

order modes into seabed dominates the coupling between propagating modes. As a

result, one would expect to observe modal fluctuations within a sector bounded in

both azimuth and range from the source. Lynch et. al. showed a considerable (6

dB) azimuthal fluctuations of the transmission loss using mobile sources as a part of

the SW06 experiment [16]. According to their results, a number of possible factors

could create such anisotropy, including a space-time undersampling, uncertainty in

the tracking positions and three-dimensional impact of the fine-scale oceanography.
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We note that in addition to the strong nonlinear internal wave activity in the SW06

site, surface swells that were possibly passing through the SW06 site (note that during

the experiment, there were two storms with the peak wind speeds of 20 m/s), could

also contribute to the above mentioned results.

It would be of great interest to experimentally measure the sound intensity scin-

tillations and its modal components solely due to the surface swells. For doing that, a

simple and cost effective experiment could be provided using a single moored vertical

line hydrophone and thermistor array (VLA) and one mobile source (small AUV with

mounted acoustic source is an excellent solution) with available tracking equipment.

By programming the source to continuously transmit the signal and circle around the

VLA with slowly increasing radius, one is able to gather a bulk of data necessary to

experimentally study this effect.

7.3 Bottom Waves

Transverse seabed patterns in the forms of megaripples or large and very large sand

waves are commonly observed [23, 24] on the continental shelves and slopes. In fact,

some ocean regions [25] are densely populated with these types of entities. Although

the oceanographic properties and origins of these bedforms have been studied for

decades now [22], their three-dimensional implications for low and medium frequency

acoustics have not received particular attention. Moreover, fine scale bathymetry is

often lowpass filtered out in computational acoustics. Unlike surface swell and internal

waves, waves of this type are not moving. However, they are often characterized by

asymmetric shape and irregular seabed properties across the wave [57]. This can

result in asymmetry of the acoustic properties across the wave. Such irregularities

will not change the horizontal critical angle of normal modes, but can result in the

asymmetric mode coupling in the across wave directions. In this section, we will

provide computational results for three-dimensional acoustic propagation through

waveguides with densely populated sand waves, using real high resolution bathymetry

data.
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Giant sand waves with the crest to crest length exceeding 200 m and amplitudes

greater than 10 m have been observed at the mouth of San Francisco Bay in 2005

and described in [71]. High resolution (2x2 m) bathymetry data was gathered with

multiple multibeam sonar measurements and is available at the Seafloor Mapping Lab

electronic database at [72]. Figure 7-9 shows a three-dimensional colored view of the

bay mouth bottom relief. A two-by-two kilometer domain in the center of the mouth

(area shown inside by the dashed line) shows very regular sand waves on the seabed,

with mean depth ranging from 30 to 106 m. In Chapter 5, we noticed that in an 80

m deep waveguide, straight and parallel bottom waves of only one meter amplitude

result in horizontal reflection and ducting of the sound wave energy within a five

degree range of the horizontal grazing angles. Our estimates for the San Francisco

Bay suggest horizontal critical angles exceeding twenty degrees! Without a doubt,

straight bottom waves of such amplitude on a flat seabed will be very strong sound

reflectors. Our main goal here is to explore the effects of the natural ducts with

noticeable curvature, varying strength and rapidly changing water depth on acoustic

propagation properties.

For our numerical modeling, we decided to to use the constant sound speed of 1500

m/s in the entire water column, and so the variability of the sound speed column is

assumed to have a second order effect on acoustic waveguide properties compared

to the large variation of the bottom depth. Using the three-dimensional wide an-

gle parabolic equation program used in the previous chapter, we simulate the full

field propagation of a continuous wave acoustic signal from a point source located

at (zs, ys, zs) = (0, 0, 10) m with frequency 500 Hz across the selected domain shown

by a dashed line in Fig. 7-9. Top panel of Fig. 7-10 shows the bathymetry of the

selected region in the Cartesian coordinates of computational domain. For illustrative

purposes, bottom depth along transect x = 1000 m (dashed line in the upper plot) is

shown in the bottom panel of Fig. 7-10.

Figure 7-11 shows depth integral of the computed acoustic intensity. A first look

at this figure shows a very good correlation with bathymetry data. Similar to results

for the adiabatic propagation of high order modes in the presence of surface swell as

150



described in the previous section, we clearly see narrow beams of increased acoustic

intensity originating close to the source location. However, unlike the case of surface

waves, we see that the intensity of the resultant pressure field that contains all the

normal modes has fluctuations of 8 dB at one kilometer distance from the source.

We also see that some of these beams follow the lines of the sand wave crests with a

strong curvature with radius of approximately 2 km. Horizontal ducting in between

curved internal waves was studied theoretically and observed numerically before [17],

but for the curvatures with ten times greater radius.

The striking results of our numerical modeling clearly show the significance of the

natural transverse bedform fields in three-dimensional ocean acoustics. It also piques

our interest for a possible small scale experiment in this bay for a quantitative valida-

tion of the numerical results. As we mentioned in the previous section, a small AUV

with a mounted acoustic source and a single mooring is an efficient way of measur-

ing directional properties in an anisotropic waveguides. However, if one attempts to

launch an unmanned vehicle in the mouth of San Francisco Bay, special care should

be taken due to the strong currents with speed exceeding five knots (which is compa-

rable to the speed performance of most available AUVs), and high shipping activity.

As a more efficient and very cheap alternative, a single hydrophone mooring can be

deployed at the optimal location for recording shipping noise. If a visual tracking

of the passing by ships is established (two high resolution camcorders mounted on

shore at the optimal look angles), it should be possible to measure the directional

properties of the received intensity.
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Figure 7-9: Three-dimensional view of the bottom relief at the mouth of San Fran-
cisco Bay. Dashed line shows the domain selected for the three-dimensional acoustic
propagation numerical modeling.
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Figure 7-10: (a) Bathymetry of the region selected for the acoustic propagation do-
main (shown by dashed line in Fig. 7-9). (b) Bathymetry transect along x = 1000
m.
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Chapter 8

Conclusions

8.1 Summary

The primary focus of this thesis has been to study the physics of three-dimensional

low frequency acoustic propagation through shallow water waveguides that contain

three common fine scale oceanographic features: ocean internal, surface and bottom

waves. The basis of our studies has been the normal mode approach, that allowed

us to explain the complexities of the sound wave propagation in terms of simple

mechanisms, mainly governed by a two dimensional plane wave Snell’s law.

Our primary experimental observations from the SW06 data (Chapter 2) revealed

interesting results showing fluctuations with approximately four degrees amplitude

in the angle of the signal arrival from a fixed source located 18 km away from the

horizontal receiving array an the azimuth nearly parallel to the dominant direction of

the nonlinear internal wave crests. More detailed analysis of similar observations for

the same and SW06 other acoustic sources by other researchers [14, 15] agree with

our results. The uncertainty about these out of vertical plane acoustic effects was one

of the main motivations for our theoretical and numerical studies.

The normal mode approach, whose fundamentals for shallow water waveguides was

given in Chapter 3, was employed in Chapter 4 for analytically studying the difference

in modal propagation caused by the presence of waves of each type. For this study, we

used a simple, but useful idealized model of the shallow water waveguide that allowed
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us to obtain first order corrections to the horizontal wavenumbers of normal modes

via perturbation theory. Our results clearly show the difference in the mode number

dependence of the horizontal wavenumber effects between wave types. Specifically,

we showed that the bottom and surface waves have the biggest influence on the

higher order acoustic modes, and their perturbation to the horizontal wavenumbers

of the lower order modes weakens evenly with decreasing mode number. On the other

hand, one or two mid number modes are most affected by the internal waves, and

the perturbation of the higher mode numbers is nearly equal. These results were

explained in terms of simple physics.

The horizontal wavenumber perturbation determines the value of the horizontal

critical angle – an important parameter of normal modes that plays a key role in

”nearly along wave crests” propagation directions. In Chapter 5, we studied coupled

normal mode reflection and transmission through straight and parallel waves of two

types. Our semi-quantitative studies for a simplified wave shapes and numerical

modeling for the realistic canonical wave shapes implicitly showed the importance of

the critical angle for the physics of the acoustic interaction with such waves. The

physics of the acoustic interaction with straight waves is similar for all wave types.

However, the values of wavenumber perturbations (and corresponding critical angles)

and its mode number dependence determine the strength of associated effects, and

that is different for waves of different types.

Horizontal propagation of normal modes with horizontal grazing angles less than

critical leads to an almost total reflection from ocean waves. Depending on the source

location relative to a group of parallel waves, this results in either the horizontal

Lloyd’s mirror (HLM) effect or horizontal acoustic ducting (or antiducting) between

the waves. In addition to primary ducting between two parallel waves, we showed

that at grazing angles just below the critical values, the effects of horizontal tunneling

through the waves and the following reflections from neighbor waves trap the modal

energy in secondary ducts. In our numerical simulations, this effect and its explicit

dependence on the critical angle value are shown.

On the other hand, at steep grazing angles (approximately 35-90 degrees in our
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examples), strong mode coupling dominates the propagation regime. The sound in-

tensity fluctuations in these directions have been observed in a number of experiments

[3, 6, 12], and are mainly driven by strong mode coupling and its resonant-like be-

havior. No significant horizontal refraction is observed in this angular region for the

ocean wave amplitudes discussed in this work. For intermediate grazing angle range,

both horizontal refraction and mode coupling were shown to be noticeable. At these

angles, both reflection from the wave fronts and secondary ducting effects are possi-

ble through mode coupling mechanisms. However, those were shown to be weak, and

acoustic energy propagates mostly without horizontal trapping in this regime.

In addition to straight and parallel waves, in Chapter 6 we studied the physics of

the acoustic interaction with crossing internal waves, which are commonly observed

on continental shelves. From our analysis, we explained and demonstrated numer-

ically that for wave crossing angles less than double the horizontal critical angle, a

significant amount of modal energy, initially ducted by the first group of waves, is

either cross-ducted or reflected by the second group of waves. This phenomenon has

not been addressed before, and it is of great interest for us to eventually validate it

experimentally.

In Chapter 7, we provided results on acoustic propagation through shallow water

waveguides that have realistic surface swell waves and real bottom topography with

large sand waves. These two fine scale oceanographic features are common for shelves

and continental slopes, but have not been considered before in applications to three-

dimensional acoustics. Surface swells were shown to have a significant impact on the

amplitude scintillation of higher order modes in a wide azimuthal range centered at

the dominant direction of the wave crests. This scintillation is range dependent due

to ”smearing” effect of random ducting by local wave crests as well as modal energy

coupling into the continuous spectrum at large distances from the source. Our three-

dimensional modeling of acoustic propagation through the mouth of San Francisco

Bay showed that the large sand waves can cause very strong horizontal refraction of

low frequency sound waves. Located on a sloping bottom with complicated relief,

these waves hold acoustic energy within the ducts, even when they have significant
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curvatures with radii of as low as two kilometers. Our results clearly show the signifi-

cance of these wave types for underwater acoustics, which we think should be further

studied experimentally.

8.2 Thesis Contributions

Below I will specify the original contributions, made on my own, but greatly inspired

and guided by my advisor.

1. Describing the motion of both the vertical and horizontal line arrays during

the SW06 experiment, which was needed for serious beamforming with these

arrays,

2. Analyzing the angle of arrival fluctuations for a fixed source in the SW06 experi-

ment, which indicates the existence of out of vertical plane acoustic propagation

in shallow water,

3. The analytical analysis of normal mode properties for a simple idealized waveg-

uide and its perturbation due to internal, bottom and surface waves. This

provides explicit results that clearly show the first order physical difference be-

tween these types of fine scale oceanographic features in applications to low

frequency acoustics,

4. A coupled normal mode analytical solution for the acoustic pressure was ob-

tained for a sharp vertical interface dividing an unperturbed idealized waveg-

uide and its perturbation due to one of the wave types. The results qualita-

tively demonstrate the physics of mode coupled reflection from and transmission

through parallel waves,

5. Based on existing algorithms, a fully three-dimensional mode coupling propa-

gation program was developed to evaluate the quantitative importance of mode

coupled reflection from, transmission through and ducting between straight par-

allel waves of different types with an exact solution,
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6. In addition to previously studied horizontal ducting of normal modes, the effect

of secondary ducting that is caused mainly by normal mode horizontal tunneling

was evaluated numerically for canonical wave shapes, and shown to be the most

important mechanism governing the energy leakage from the primary duct,

7. The problem of acoustic propagation through crossing internal waves is simu-

lated numerically for straight internal waves and a variable angle of crossing.

It was shown numerically that the reflection from the crossing waves and cross

ducting are two important mechanisms that push modal energy out of the pri-

mary duct.

8. Three-dimensional numerical modeling of acoustic propagation in presence of

long surface swells and bottom sand waves showed the significance of these wave

types for low frequency sound propagation applications.

8.3 Future Directions

8.3.1 Analysis and Modeling

The results we provided in this thesis are for single frequency signals. Although

the qualitative physics is similar for a wide range of low frequencies, one should

numerically study the broad band three-dimensional acoustic propagation through

internal wave crossing structures, surface swells and bottom waves before considering

the experimental studies. For instance, path differences between three-dimensional

patterns might be resolved by pulse travel times.

For the crossing internal waves, modeling of three-dimensional sound propagation

through more realistic waveguides, that incorporate SAR signatures of internal wave

curvature and wave crossings, as well as the more detailed vertical structure of the

water column inside the wave crossings, will give more exact answers.

Ocean swells (and bottom sediment waves in some parts of the ocean) can also be

considered as a spatial distribution of local ducts with random locations, directions

and strengths, which are described by a corresponding directional spectrum. Based on

159



recent studies by McMahon [73], a diffusion type equation can be applied for studying

the acoustic propagation problem statistically in presence of such waves. This is an

alternative method of obtaining the statistics of the modal amplitude scintillations

due to three-dimensional effects.

8.3.2 Experimentation

Three possible experiments aimed at experimentally validating our theoretical and

numerical results, and we briefly summarize them.

1. If one wants to capture the effects of secondary ducting or cross-ducting at the

internal wave crossings, an optimally deployed ”L”-shaped acoustic array and

a mobile source that can track the waves in a user defined manner could be an

efficient basis for the future experiment. Use of broadband pulses could add

some time domain power to resolving the three-dimensional multipaths.

2. For measuring the statistics of modal amplitude scintillations in the presence

of long surface swells, a single vertical line hydrophone array and an AUV with

mounted acoustic source and tracking equipment will allow one to gather enough

data necessary to obtain the azimuthal and range statistics of the modal am-

plitude scintillations. The three-dimensional scintillations have a very distinct

signature versus azimuth and range.

3. A small scale cost-effective experiment with a moored vertical hydrophone array

(or even a single hydrophone) and a simple shipping traffic tracking device

might be performed in the San Francisco Bay for studying the strong horizontal

ducting by the sand waves. The dependence on the space-time variability must

be considered, however.
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Appendix A

Horizontal and Vertical Line

Arrays Navigation

A.1 System Configuration

In the SW06 experiment, the shape and motion of the vertical (VLA) and horizontal

(HLA) line arrays (denoted overall as WHOI array in Fig. 2-1b) were tracked using

an acoustic the long baseline (LBL) navigation system [74]. The HLA/VLA receiving

system included: an electronics and battery sled (called the Shark because of its

shape) connecting to the HLA and VLA; a 79 m long 16 channel hydrophone VLA,

and a 472 m 32 channel hydrophone HLA, anchored by the Shark at one end and

by the HLA tail sled at the other end (Fig. 2-2). The closest hydrophone channel

to the Shark on the HLA (CH 47) is located 3 meters from the sled, followed by 31

evenly spaced (15 meters apart) channels. There is also a 3 m distance between the

last channel on the HLA (CH 47) and the tail sled, followed by a 125 m long ground

cable and 1.5 m long chain connected to the tail sled. Therefore, there is a 597.5 m

long line connecting the Shark and the tail sled. The Shark was deployed first and

then used as anchored weight to keep the HLA tight and straight.

The LBL system consisted of an 11.5 kHz interrogator mounted on the HLA tail

sled and two Benthos TR6000 transponders deployed West (11.0 kHz) and East (12

kHz) of the Shark (Fig. A-1). The interrogator and both transponders were deployed
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Table A.1: Deployed and refined positions of the LBL elements.

Deployed position Surveyed or improved position

Shark 39 1.2516N 73 2.9824W 39 1.2627N 73 2.9887W

West transponder 39 1.3816N 73 3.2088W 39 1.3771N 73 3.2107W

East transponder 39 1.2420N 73 2.5334W 39 1.2341N 73 2.5293W

Tail sled 39 1.5865N 73 2.9833W 39 1.5836N 73 2.9773W

Table A.2: Nominal positions of the selected hydrophone channels.

Channel number Nominal position

CH0 Top of the VLA (Depth 13.5 m)

CH6 22.5 m from the VLA top (Depth 36.0 m)

CH10 31.25 m from the VLA top (Depth 54.75 m)

CH13 63.75 m from the VLA top (Depth 77.25 m)

CH17 HLA, 453 m from the tail sled (Depth 79 m)

CH27 HLA, 303 m from the tail sled (Depth 79 m)

CH37 HLA, 153 m from the tail sled (Depth 79 m)

at a depth of one meter above the bottom. After deployment, the positions of the

Shark and the West and East transponders were acoustically surveyed from the ship

to improve their locations. Table 1 shows the deployed and surveyed positions of the

Shark and both transponders, as well as the deployed position of the tail sled. The

11.5 kHz interrogator mounted on the tail sled had no survey because it couldnt be

interrogated remotely. The improved position of the tail sled, that is presented in

Table A.2, was found from the LBL data in the same manner as the positions of the

hydrophone channels below. It follows from the Table A.2 that the distance between

the Shark and the tail sled was 594.5 meters, which implies 3 meters of slack in the

HLA. Figure A-1 shows a top view of the positions of the two transponders and the

interrogator relative to the Shark. Four channels on the VLA (CH0, CH6, CH10,

CH13) and three channels on the HLA (CH13, CH27, CH37) were chosen for the LBL

reception (circles in Fig. A-1). Table A.2 summarizes nominal locations along the

arrays) of these channels.

The sequence of interrogation events is: the interrogator emits an 11.5 kHz 10ms

ping that is then retransmitted by the East and West transponders at frequencies of
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Figure A-1: Top view of the LBL system elements and selected hydrophone channels
for LBL navigation.

11.0 and 12.0 kHz respectively. Each designated channel on the HLA(VLA) receives

the signals and stores corresponding travel time. The turnaround time of the TR6000

Benthos transponder is specified to be 2.5 ms. There is also 10 ms needed to detect the

pulse, so that the total travel time through each of the two transponders is the sum of

the travel time from interrogator to transponder, travel time from the transponder to

the channel on the HLA(VLA), and a total turnaround time of 12.5ms. Travel times

from the interrogator to the selected channels do not include any of these additional

delays.

A.2 VLA Navigation

Four hydrophone channels on the VLA (CH0, CH6, CH10 and CH13) were selected

to receive the LBL signals. Channel 13 was nominally located only one meter above

the bottom and was therefore considered to be fixed. Travel time to this hydrophone

was used to get an improved position of the tail sled that is shown in Table A.2. This

position was calculated in the same manner as the positions of the HLA channels
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in the next section. Travel times to the VLA channels CH6 and CH10 had much

larger variance than the travel times to the top VLA channel CH0 for all three paths.

Assuming the strain in the VLA due a 37.5” diameter floating steel sphere is enough

to keep the VLA cable straight, we decided not to consider those travel times further

and only used the travel times to the top VLA channel CH0 for VLA navigation.

The one leg corrected travel times can be written as

TW = tW − 0.0125− tI−W ,

TE = tE − 0.0125− tI−E,

TI = tI ,

(A.1)

where tW , tE and tI are the total travel times from the signal interrogation until its

reception at channel CH0 for the two-leg paths through the West transponder, East

transponder and the direct path from the interrogator respectively, and tI−W and

tI−E are the travel times between the interrogator and West and East transponders

respectively. As an illustration, Fig. A-2 shows total travel time series tI and tE to the

channel CH0. One can see from this figure that the variance of the total travel time

through the transponder is greater than for the direct path. In order to understand the

arrival time structure, as well as to aid in calculating the interrogator to transponder

travel times tI−W and tI−E, a ray tracing method [1] was used. In our calculations, we

used the water column sound speed at the Shark position provided by the WHOI data

(available online at the SW06 website). Assuming a locally range independent water

column, eigenrays from the interrogator to each of the transponders were found, using

the Bellhop [75] ray tracing code. Figure A-3 shows typical eigenrays connecting the

interrogator with the West (center plot) and East (right plot) transponders for one of

the selected water column sound speed (left plot). Between the interrogator and the

West transponder, there was usually one along bottom water borne eigenray (blue

line) and one surface reflected eigenray(black line) found. However, our modeling

often showed one additional water borne refracted eigenray (blue refracted ray in the

right plot) connecting the interrogator with the East transponder. At the West two-

leg path, along bottom eigenray was dominant over the entire time of experiment.
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Figure A-2: Example of the total travel time from the interrogator to the top VLA
hydrophone channel CH0 for the direct path (upper panel) and for the two-leg path
through the East transponder (lower panel).

On the other hand, both water borne eigenrays were often considered on the East

two-leg path, since the travel time difference along these eigenrays was comparable

with the variation of the total travel time along this path. As a result, up to two

possible values are computed for TI−E and one for TI−W are available for our further

calculations.

After one-leg travel times TW , TE and TI are found, ray tracing was performed

again, but in a ”ray fan” mode. In Fig. A-4, a ray fan (right plot) is plotted for

one of the sound speed columns (same water column example as in Fig. A-3). The

circles on the rays denote possible locations of the channel CH0 in the vertical planes

connecting the East transponder (left group), the interrogator (central group) and the

West transponder (right group) with the Shark according to the integral of the travel

time along the rays. The plots in the Fig. A-5 show these patterns separately for each

of the three paths. The red rhomb denotes the nominal position of the top channel

CH0 (assuming the upright position of the VLA) on each of the vertical planes. Blue
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Figure A-3: One of the selected sound speed columns (a) and the corresponding eigen-
rays connecting the interrogator with the West transponder (b) and the interrogator
with the East transponder (c).
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Figure A-4: One of the sound speed columns at the VLA (a) and computed acoustic
”ray fan” (b). Left, central and right groups of circles correspond to the possible
locations of the channel CH0 according to the travel time integral along each ray for
the paths East transponder-to-CH0, interrogator-to-CH0 and West transponder-to-
CH0 respectively.

and black circles represent water borne and surface reflected rays respectively. As

one can see from the plots, the arrival structure is complicated and different for each

path. In this particular example, water borne rays do not reach the nominal depth

of the channel CH0 for the East transponder-to-CH0 and interrogator-to-CH0 paths

(shadow zone). On the other hand, both surface reflected and water borne rays are

available for the West transponder-to-CH0 path. The structure of these patterns was

changing with time as the water column sound speed was changing. We also note

that we had up to two possible corrected travel times TI−E which doubles the number

of possible horizontal ranges from the East transponder to the channel CH0. In order

to find the correct horizontal range from the West transponder, the interrogator, or

the East transponder to the channel CH0, we selected only the rays that reach the

±1 m range of the nominal depth of the channel CH0. If more than one such ray

was available (as in the example of the West transponder-to-CH0 paths shown in the

top panel of Fig. A-5) or if more than one corrected travel time is available (two

possible values of TI−E), we manually selected the most probable horizontal range
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Figure A-5: Possible locus of the channel CH0 in the vertical planes connecting
the West transponder and CH0 (a), the Interrogator and CH0 (b) and the East
transponder and CH0 (c). Blue and black colors denote water borne and surface
reflected rays respectively. Red rhombs indicates the nominal position of the channel
CH0.
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Figure A-6: Horizontal positions of the top VLA hydrophone channel CH0. The
y-axis points true North and the x-axis points true East.

from the interrogator (or West or East transponder) to the channel CH0 according to

the geometrical constraint of maximum array tilt (we used 15 deg as a maximum tilt

constraint that would correspond to the strong currents of 2 m/s, given the flotation

sphere radius and weight). A median filter with a window length of three hours was

then applied to the selected ranges. The final horizontal position of CH0 was found by

a least square fit triangulation, see Fig. A-6. The standard deviation of the horizontal

displacement of CH0 is 0.8 m and the maximum horizontal excursion is 5.3 m. This

results in a standard deviation of the VLA tilt of 0.6 deg and maximum tilt of 3.9

deg.

A.3 HLA Navigation

For tracking the selected HLA channels CH17, CH27 and CH37, we used the correc-

tions TIW and TI−E found during the localization of the channel CH0 in the previous

section. Ray tracing was performed for the corrected one leg travel times for these

channels, in the same manner as we did for the channel CH0. Arrival patterns, qual-

itatively similar to Fig. A-5, were obtained for these channels, but in this case the

nominal depth is 77 m since the HLA lay on the seabed. As we can see from Fig. A-5,
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at larger depths the range bias noted between selecting different multipaths is larger

for deeper hydrophones, and it is biggest at the seabed. This is consistent with much

larger variance of the one leg corrected travel times to some of the HLA channels (as

an example, the East transponder-to-CH27) than to the VLA channel CH0. In order

to pick the proper eigenray from each of the transponders and the interrogator to

the selected HLA channel, the following method was used. A moving average with

a window length of four hours was calculated for each of the eigenrays’ horizontal

range and for each of three paths. By looking at these, the dominating eigenray was

chosen at each of the three paths by means of a best least squares fit. For some paths,

the along bottom water borne eigenray reception dominated, whereas for the other

paths it was the refracted water borne ray. Although there was a dominant eigenray

for each particular path, sometimes others were picked up by the receiver. As an

example, Fig. A-7 shows the horizontal range from the East transponder to CH27

path corresponding to the water borne along bottom eigenray (green), a refracted

water borne eigenray (blue) and a surface reflected eigenray (black). By analyzing

the moving average lowpass filtered horizontal ranges for each of the eigenrays, the

water borne refracted eigenray was shown to be dominant in this example. The yellow

line represents the low lowpass filtered ranges of the dominant ray. One can see from

the figure that sometimes the surface reflected or along bottom water borne eigenrays

have horizontal ranges closer to the lowpass filtered ranges of the dominant ray. In

such cases, we selected these rays instead of the dominant ray for our computations.

A final combination of the horizontal ranges for selected eigenrays is shown by the

red dots in Fig. A-7. A similar calculation was performed for other HLA channels.

Applying least square triangulation to the selected horizontal ranges, locations

of channels CH17, CH27 and CH37 are found and plotted in Fig. A-8 in Cartesian

coordinates, where the Shark is taken as the origin, the y-axis points True North

and the x-axis points True East. As we can see from the plots, the spread in the

y-components of the locations found is less in the x-components, which is consistent

with only three meters of slack in the total length of the HLA, connecting cables

and chains. Referring to the x-direction distribution, we note two distinct groups at

170



Table A.3: Average values and standard deviations for the coordinates of the HLA
hydrophone channels CH17, CH27 and CH37.

Period < X >, m STD(X), m < Y >, m STD(Y ), m

CH17 Deployment – Recovery 0 1.2 451.1 0.6

Deployment – Aug 19 21:39 UTC -7.9 1.9 302.3 0.3

CH27 Aug 19 21:39 – Sep 2 10:36 UTC -1.2 1.1 302.0 0.4

Sep 2 10:36 UTC – Recovery -5.6 1.1 302.2 0.4

Deployment – Aug 19 21:39 UTC -7.6 2.3 151.9 0.1

CH37 Aug 19 21:39 – Sep 2 10:36 UTC 4.4 1.3 151.5 0.1

Sep 2 10:36 UTC – Recovery -6.4 1.1 151.9 0.1

both the CH27 and CH37 locations. This indicates the movement of the HLA along

the x-axis, during which the Southern part of the HLA moved over greater distance

than its Northern part. From Fig. A-9, one can see that there were actually two

shifts of the HLA: one towards the East on 2006 Julian day 231 (August 19, 2006),

and another towards the West on 2006 Julian day 245 (September 2, 2006). Both

shifts indicate a larger movement of channel CH37 and very small or no movement of

channel CH17.

To support the results obtained, Fig. A-10 shows a very good correlation between

the two shifts seen in Fig. A-9 and the Eastern component of the ocean current,

recorded with an Acoustic Doppler Current Profiler at the 68 m depth bin at the

nearby mooring SW30 location (see [13] for the mooring configuration details). We

conclude from this data that the two shifts of the HLA were induced by bottom

currents on August 19 and September 2.

Although we partially corrected the multipath uncertainties in the horizontal

ranges, we were not able to describe any other positive movements of the HLA.

Therefore, we suggest that for practical purposes, the average positions of the chan-

nels CH27 and CH37 are used for each of the three time periods: 1) deployment

until the first shift on August 19 at 21:30, 2) the first shift until the second shift on

September 2 at 11:00, and 3) from the second shift until recovery. Channel CH17 did

not show any noticeable movements during the entire time of experiment. Table A.3

summarizes the average coordinates of the channels CH17, CH27 and CH37 and its

standard deviations for each of the three selected periods.
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Appendix B

Three-Dimensional Mode Coupling

in Environments Changing in Two

Dimensions

Here we describe a useful algorithm for computing three-dimensional coupled mode

solutions for the acoustic pressure in waveguides with laterally varying properties

along the y-axis and independent of the x-axis. Assume waveguide changes to be

within the segment [ya yb] such that

c (x, y, z) =



























ca (z) , y ≤ ya,

c (y, z) , ya < y < yb,

cb (z) , y ≥ yb,

(B.1)

ρ (x, y, z) =



























ρa (z) , y ≤ ya

ρ (y, z) , ya < y < yb,

ρb (z) , y ≥ yb.

(B.2)

Similar to Section 5.3.2, the one-dimensional I.F.T. operator (Eq. 5.12) can be ap-

plied to both sides of Eq. (3.33), and we can rewrite the resultant two-dimensional

175



separated Helmholtz equation [53]:

ρ
∂

∂y

[

1

ρ

∂p

∂y

]

+ ρ
∂

∂z

[

1

ρ

∂p

∂z

]

+

[

ω2

c2
− k2

x

]

p (kx, y, z) = −δ (y − ys) δ (z − zs)

2π
. (B.3)

Our initial three-dimensional mode coupling problem is now divided into many two-

dimensional problems, one for each kx, that can be solved using known techniques.

One of them is the spectral parabolic equation (PE), introduced by Orris and Collins

[76] for studying three-dimensional acoustic propagation over a sloping bottom. Al-

though the spectral PE method is robust, it has certain angular limitations, and we

want to provide the most accurate solution to our three-dimensional problem. To do

this, we employ the two-way coupled mode method of solving each of the x-reduced

problems [54]. Following the logic of the two-dimensional two-way mode coupling

algorithm [55, 33], we divide our waveguide into N + 1 segments by N vertical plane

interfaces y = yj, j = 1..N such that y1 = ya, yN = yb (Fig. B-1). It is further as-

sumed that the waveguide properties don’t change significantly within each segment

j and are locally range independent with density and sound speed columns ρj (z)

and cj (z) respectively, horizontal modal wavenumbers kj
rm, and a mode function set

Ψj
m (z). By placing an acoustic source into segment js and neglecting the contribution

from the continuous part of the spectrum, the acoustic pressure field in segment j is

p̃(j) (kx, y, z) =
∑M

m=1

[

Φ(j)+
m eik

j
ym(kx)(y−yj) + Φ(j)−

m eik
j
ym(kx)(yj−y)

]

Ψj
m (z) + δ (j − s) p̃s, (B.4)

where the source contribution is

p̃s (kx, y, z) =
i

4πρ (zs)

M
∑

m=1

Ψjs
m (zs)Ψ

js
m (z)

eik
js
ym(kx)|y−ys|

kjs
ym (kx)

. (B.5)

In the above, M is the number of propagating modes, and the y-component of the

modal wavenumber in segment j is defined (similarly to Section 5.2) as

kj
ym ≡















√

(

kj
rm

)2 − k2
x, |kx| ≤ kj

rm,

i

√

k2
x −

(

kj
rm

)2
, |kx| ≥ kj

rm

(B.6)

176



z

Ocean

Surface

Ocean

Bottom

ya =y1 y2

Sector 1 Sector 2

Φm
(2)-

yj-1 yj yj+1

Sector j Sector j+1

yjs -1

Sector js

p~s

Source

(ys ,zs)

yb=yN

Sector N+1

yjs

y

Φm
(2)+

Φm
(1)-

Φm
(j)-

Φm
(js )-

Φm
(j+1)-

Φm
(j)+
Φm

(j+1)+
Φm

(js)+
Φm

(N+1)+

Figure B-1: The range dependent part of the waveguide [ya yb] is divided by N
vertical interfaces yj, j = 1..N into N + 1 segments such that y1 = ya, yN = yb.
Within each segment, the waveguide properties don’t change significantly and are
thus locally range independent. The solution within each homogeneous segment j is a
sum of right and left going plane waves with amplitudes Φ(j)+

m and Φ(j)−
m respectively.

Segment js containing the acoustic source has an additional source term p̃s in the
solution.
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Using the matrix notation formalism in the two-dimensional version of this algo-

rithm [33], appropriate boundary conditions at interface j for acoustic pressure and

y-component of particle velocity can be written as

Φ(j+1)+ + E
j+1
2 Φ(j+1)− + S1δjs,j+1 = C̃j (kx)

(

E
j
1Φ

(j)+ +Φ(j)− + S2δjs,j
)

, (B.7)

and

Φ(j+1)+ − E
j+1
2 Φ(j+1)− − iS1δjs,j+1 = Ĉj (kx)

(

E
j
1Φ

(j)+ −Φ(j)− + iS2δjs,j
)

, (B.8)

respectively, where δjs,j denotes the Kronecker symbol as before. Vectors Φ(j)+ and

Φ(j)− consist of coefficients Φ(j)+
m and Φ(j)−

m respectively, the propagator matrices Ej
1

and E
j+1
2 are

E
j
1 = diag

(

eik
j
ym(kx)(yj−yj−1)

)

, (B.9)

E
j+1
2 = diag

(

eik
j+1
ym (kx)(yj+1−yj)

)

, (B.10)

and the coupling matrices C̃(j) and Ĉl are

C̃
j
lm (kx) =

∫ Ψj+1
l (z)Ψj

m (z)

ρj+1 (z)
dz, (B.11)

Ĉ
j
lm (kx) =

kj
ym (kx)

kj+1
yl (kx)

∫ Ψj+1
l (z)Ψj

m (z)

ρj (z)
dz. (B.12)

Vectors S1 and S2 are the source contributions at the interfaces js − 1 and js and

consist of elements s1,m,m = 1..M and s2,m,m = 1..M respectively, where

s1,m =
iΨjs

m (zs) e
ikjsym(ys−yjs−1)

4πρ (zs) k
js
ym (kx)

,

s2,m =
iΨjs

m (zs) e
ikjsym(yjs−ys)

4πρ (zs) k
js
ym (kx)

.

(B.13)
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The Sommerfeld radiation condition implies that

Φ(1)− = 0,

Φ(N+1)+ = 0.
(B.14)

By combining all the equations together into one matrix block form, one gets
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, (B.15)

where

R
j
1 =

C̃j + Ĉj

2
E

j
1,

R
j
2 =

C̃j − Ĉj

2
,

R
j
3 =

(

E
j+1
2

)−1 C̃j − Ĉj

2
E

j
1,

R
j
4 =

(

E
j+1
2

)−1 C̃j + Ĉj

2
,

R5 = 0,

R6 = −
(

E
js
2

)−1
,

R7 =
C̃js + Ĉjs

2
,

R7 =
(

E
js+1
2

)−1 C̃js − Ĉjs

2
,

(B.16)
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Figure B-2: New integration contour shifted into the complex plane away from the
poles.

and I is the identity matrix. Having solved the block matrix equation above for

multiple evenly spaced values of kx, the pressure kernel is constructed using B.4 and

converted to p (x, y, z) with the one-dimensional F.T. operator (Eq. (5.18)).

In the absence of physical attenuation in the system (bottom loss is a good exam-

ple), matrix Eq. (B.15) has a singular solution in segment j when

kx = kj
rm, m = 1..M.

Although including physical attenuation smooths the kernel slightly, it still requires a

large number of sampling points to avoid aliasing. Another method that requires much

fewer sampling points consists of shifting the integration contour into the complex

plane [77, 33] by the offset ǫ (Fig. B-2). The new integration contour consists of

three sections c1, c2, and c3. With a proper choice of the upper integration limit,

the contribution from the last section c3 is negligible. The contribution of c1 is

easily adjusted by multiplying the final solution by eǫ x [33]. In our applications, we

evaluated the kernel at Nkx = 213 points, and the value of the offset that guaranteed

the wrap-around attenuation by 50 dB was

ǫ =
12kmax

x

2π (Nkx − 1) log e
, (B.17)

which is four times greater than that required for applications of sound reflection
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from the sea bottom [33].
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Appendix C

Comparison of the Wide Angle

Parabolic Equation Program with

the Exact Solution

In order to validate the accuracy of the three-dimensional wide angle parabolic equa-

tion program used in Chapters 6 and 7, we run it for the same scenario as shown

in Fig. 5-24 and the result is shown in Fig. C-1. One can clearly see a very good

agreement between two results at the wide range (up to 40 deg) of horizontal angles.

This allowed us to reliably use this program for the more complicated environments

such as crossing nonlinear internal waves or the large sand waves at the San Francisco

Bay.
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Figure C-1: Output of the three-dimensional wide angle parabolic equation program
for the same scenario as shown in Fig. 5-24.
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